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A Omitted Proofs and Details

We begin with the omitted proofs and technical details from the paper.

A.1 Competitive Search Equilibrium

Define the elasticity of the job-filling rate with respect to market tightness θt(z) as

η(θt(z)) ≡ −d log(λf (θt(z)))

d log(θt(z))
= −θt(z)

λ′f (θt(z))

λf (θt(z))
. (1)

Then, as long as θt(z) > 0, we have

λ′f (θt(z))

λf (θt(z))
= −η(θt(z))

θt(z)
and

λ′w(θt(z))

λw(θt(z))
=

1− η(θt(z))

θt(z)
, (2)

where the second equality follows from (1), λwt(θt(z)) = θt(z)λft(θt(z)) for θt(z) > 0, and

λ′w(θt(z))

λw(θt(z))
=
θt(z)λ′f (θt(z))

θt(z)λf (θt(z))
+

1

θt(z)
= −η(θt(z))

θt(z)
+

1

θt(z)
.

In this expression, the first equality follows from differentiating λwt(θt(z)) = θt(z)λft(θt(z)) and substi-
tuting λ′w(θt(z)) = θt(z)λ′f (θt(z)) + λf (θt(z)) and λw(θt(z)) = θt(z)λf (θt(z)) for λ′w(θt(z))/λw(θt(z))

and the second equality uses (1). Notice also that the second equation in (2) and λwt(θt(z)) =

θt(z)λft(θt(z)) imply
λ′w(θt(z)) = [1− η(θt(z))]λft(θt(z)), (3)

which we will use later. It will be convenient for later results to summarize in a compact form the
conditions determining the competitive search equilibrium. In the next proposition, we do so and
also provide a condition that implies that the deviation market tightness θ̃t(z) equals the symmetric
one θt(z).

Proposition 1 (Characterization of Competitive Search Equilibrium). In a competitive search
equilibrium the following hold:

a. The optimality condition for a firm’s wage offer is

−
λ′f (θt(z))

λf (θt(z))
[Yt(z)−Wmt(z)] =

λ′w(θt(z))

λw(θt(z))
[Wmt(z) +Wpt(z)− Ut(z)] (4)

or, equivalently using (2) when θt(z) > 0,

η(θt(z))[Yt(z)−Wmt(z)] = [1− η(θt(z))][Wmt(z) +Wpt(z)− Ut(z)]. (5)

b. The free-entry condition is given by

κAtz = λf (θt(z))[Yt(z)−Wmt(z)]. (6)

c. The values of output in a match Yt(z), the value of unemployment Ut(z), and the post-match
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value Wpt(z) satisfy

Yt(z) = Atz + φ(1− σ)EtQt,t+1Yt+1((1 + ge)z) (7)

Ut(z) = bAtz + φEtQt,t+1λw(θt+1(z)) [Wmt+1((1 + gu)z) +Wpt+1((1 + gu)z)] (8)

+ φEtQt,t+1[1− λw(θt+1(z))]Ut+1((1 + gu)z)

Wpt(z) = φ(1− σ)EtQt,t+1Wpt+1((1 + ge)z) + φσEtQt,t+1Ut+1((1 + ge)z). (9)

d. Suppose that the matching function m(ubt(z), vt(z)) is such that its derivative with respect to
the measure of unemployed workers, namely,

D(θt(z)) ≡ ∂m(ubt(z), vt(z))

∂ubt(z)
= ηtλw(θt(z)) (10)

is strictly increasing in θt(z) and that match surplus, Yt(z) + Wpt(z) − Ut(z), is different from zero.
Then, it is optimal for each firm to choose θ̃t(z) = θt(z) and W̃mt(z) = Wmt(z), where θt(z) and
Wmt(z) are the common market tightness and offer.

Note that condition (10) in part d is satisfied for many common matching functions, including the
Cobb-Douglas matching function that we use.

Proof. For part a, we first derive the firm optimality condition (4). Consider the firm’s maximization
problem, taking as given that all other firms have chosenWmt(z) and market tightness is θt(z), namely,

max
W̃mt(z),θ̃t(z)

− κAtz + λf (θ̃t(z))[Yt(z)− W̃mt(z)] + [1− λf (θ̃t(z))]EtQt,t+1Vt+1(z)

s.t. µ̃t(z) : λw(θt(z))[Wmt(z) +Wpt(z)− Ut(z)] ≤ λw(θ̃t(z))[W̃mt(z) +Wpt(z)− Ut(z)],

where µ̃t(z) is the multiplier on the worker participation constraint. The associated first-order con-
ditions are

W̃mt(z) : λf (θ̃t(z)) = µ̃t(z)λw(θ̃t(z)) (11)

and

θ̃t(z) : λ′f (θ̃t(z))[Yt(z)− W̃mt(z)− EtQt,t+1Vt+1(z)] = µ̃t(z)λ′w(θ̃t(z))[W̃mt(z) +Wpt(z)− Ut(z)]

or, rearranging terms, using the free-entry condition Vt+1(z) = 0, and (11),

−
λ′f (θ̃t(z))

λf (θ̃t(z))
[Yt(z)− W̃mt(z)] =

λ′w(θ̃t(z))

λw(θ̃t(z))
[W̃mt(z) +Wpt(z)− Ut(z)].

By assuming that θ̃t(z) > 0, multiplying both sides by θ̃t(z), and substituting from (2), we obtain

η̃t(θ̃t(z))[Yt(z)− W̃mt(z)] = [1− η̃t(θ̃t(z))][W̃mt(z) +Wpt(z)− Ut(z)], (12)

which establishes (4) and (5).

For parts b and c, we note that the free-entry condition is in the paper and the equations for Yt(z),
Ut(z), and Wpt(z) can all be derived by rearranging the expressions in the paper.
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We turn now to part d. We establish this result by using the condition Yt(z) +Wpt(z)−Ut(z) 6= 0

to reduce the firm’s optimality condition to

D(θt(z)) = D(θ̃t(z)), (13)

which under the assumption that D(·) is strictly increasing, has a unique solution θ̃t(z) = θt(z). To
do so, note that, by the participation constraint, we have

W̃mt(z) = Ut(z)−Wpt(z) + x̃t(z)[Wmt(z) +Wpt(z)− Ut(z)] and x̃t(z) ≡ λw(θt(z))

λw(θ̃t(z))
. (14)

Substituting from (14) into (12) gives

η̃t(θ̃t(z)){Yt(z)− Ut(z) +Wpt(z)− x̃t(z)[Wmt(z) +Wpt(z)− Ut(z)]}
= [1− η̃t(θ̃t(z))]x̃t(z)[Wmt(z) +Wpt(z)− Ut(z)].

Rearranging (5) as

Wmt(z) +Wpt(z)− Ut(z) = η(θt(z))[Yt(z) +Wpt(z)−Wmt(z)]

and plugging this into the previous equation yields

η̃t(θ̃t(z)){Yt(z)− Ut(z) +Wpt(z)− x̃t(z)η̃t(θ̃t(z))[Yt(z) +Wpt(z)− Ut(z)]}
= [1− η̃t(θ̃t(z))]x̃t(z)ηt(θt(z))[Yt(z) +Wpt(z)− Ut(z)]

or, using that Yt(z) +Wpt(z)− Ut(z) 6= 0,

η̃t(θ̃t(z))[1− x̃t(z)ηt(θt(z))] = [1− η̃t(θ̃t(z))]x̃t(z)ηt(θt(z)) or x̃t(z) =
η̃t(θ̃t(z))

ηt(θt(z))
,

which using x̃t(z) = λw(θt(z))/λw(θ̃t(z)) and D(θt(z)) = ηtλw(θt(z)), can be rewritten as

D(θt(z)) = ηt(θt(z))λw(θt(z)) = η̃t(θ̃t(z))λw(θ̃t(z)) = D(θ̃t(z)), (15)

which implies (13). Since D(·) is monotone, we have that θ̃t(z) = θt(z). Finally, to see that D(θt(z))

satisfies (10), we note that since mt = vtλft,

D(θt(z)) =
∂ [vt(z)λf (θt(z))]

∂ubt(z)
= vt(z)

∂λf (θt(z))

∂θt(z)

∂θt(z)

∂ubt(z)
= −θt(z)2λ′f (θt(z))

=

[
−θt(z)

λ′f (θt(z))

λf (θt(z))

]
θt(z)λf (θt(z)) = ηtλw(θt(z)),

where in the third equality we use that ∂θ/∂ubt = ∂(v/ubt)/∂ubt = −v/u2
bt and in the fourth equality

we used (2) and that λw(θt(z)) = θt(z)λf (θt(z)).
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A.2 Linearity of Competitive Search Equilibrium

We begin with the statement of Lemma 1 and then provide its proof.

Lemma 1 (Linearity of Competitive Search Equilibrium). In a competitive search equilibrium,
labor market tightness θt(z), the job-finding rate λwt(θt(z)), the job-filling rate λft(θt(z)), and the
elasticity ηt(θt(z)) are independent of z, and values are linear in z in that Wmt(z) = Wmtz, Wpt(z) =

Wptz, Ut(z) = Utz, Wt(z) =Wtz, and Yt(z) = Ytz.

Proof. By Proposition 1, for a given path for the stochastic discount factor, the competitive search
equilibrium is characterized by processes {θt(z), Yt(z), Ut(z),Wpt(z),Wmt(z)} that satisfy (4), (6),
(7),(8), and (9).

We guess and then verify that a solution to this system of equations has labor market tightness
independent of z, θt(z) = θt, and valuations linear in z, Wpt(z) = Wptz, Ut(z) = Utz, Yt(z) = Ytz,
and Wmt(z) = Wmtz, and so Wt(z) = Wtz. The verification step replaces the guess in the equations
and divides by z both sides of each equation so that

0 =
λ′ft(θt)

λft(θt)
(Yt −Wmt) +

λ′wt(θt)

λwt(θt)
(Wmt +Wpt − Ut)

κAt = λft(θt) (Yt −Wmt)

Wpt = φ(1− σ)(1 + ge)Et(Qt,t+1Wpt+1) + φσ(1 + ge)Et(Qt,t+1Ut+1)

Ut = bAt + φ(1 + gu)Et[Qt,t+1λwt(θt)(Wmt+1 +Wpt+1)] + φ(1 + gu)Et{Qt,t+1[1− λwt(θt)]Ut+1}
Yt = At + φ(1− σ)(1 + ge)Et(Qt,t+1Yt+1)

.

This system of equations admits a solution independent of z, thereby verifying the guess. Note that
the linearity of flow market production, home production, and vacancy costs is key to this result.

A.3 Laws of Motion for Aggregate Human Capital

To derive these aggregate laws of motion, we first show how to derive the laws of motions for et(z)

and ut(z), namely,

et(z) =
φ (1− σ)

1 + ge
et−1

(
z

1 + ge

)
+ λwt(θt)ubt(z) (16)

and

ut(z) =
φσ

1 + ge
et−1

(
z

1 + ge

)
+ [1− λwt(θt)]ubt(z) + (1− φ) ν(z), (17)

and then aggregate them. To see where these laws of motion come from, denote by (zt, τ t) the pair
of human capital and labor market status τ t ∈ {e, u}, namely, either employed or unemployed, of a
consumer at t with human capital zt−1 and market status τ t−1 ∈ {e, u} in t− 1. Note that

(zt, τ t)|τ t−1 =



((1 + ge)zt−1, e), with probability φ(1− σ) if τ t−1 = e

((1 + ge)zt−1, u), with probability φσ if τ t−1 = e

((1 + gu)zt−1, e), with probability φλw(θt) if τ t−1 = u

((1 + gu)zt−1, u), with probability φ[1− λw(θt)] if τ t−1 = u

(z, u), with probability (1− φ)ν(z) for all τ t−1
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with z > 0 drawn from the continuous distribution with density ν(z). Hence,

et(z) =
φ(1− σ)

1 + ge
et−1

(
z

1 + ge

)
+ λw(θt)

φ

1 + gu
ut−1

(
z

1 + gu

)
,

ut(z) =
φσ

1 + ge
et−1

(
z

1 + ge

)
+ [1− λw(θt)]

φ

1 + gu
ut−1

(
z

1 + gu

)
+ (1− φ)v(z),

where the measure of unemployed workers at the beginning of period t with human capital z is

ubt(z) =
φ

1 + gu
ut−1

(
z

1 + gu

)
.

From (16) and (17), we can derive the law of motion of the aggregate human capital of employed
workers Zet ≡

∫
zet(z)dz as

Zet =

∫
zet−1

(
z

1 + ge

)
φ(1− σ)

1 + ge
dz +

∫
zut−1

(
z

1 + gu

)
φλw(θt)

1 + gu
dz

= φ(1− σ)

∫
z

1 + ge
et−1

(
z

1 + ge

)
dz + φλw(θt)

∫
z

1 + gu
ut−1

(
z

1 + gu

)
dz

= φ(1− σ)(1 + ge)

∫
z

1 + ge
et−1

(
z

1 + ge

)
d

(
z

1 + ge

)
+ φλw(θt)(1 + gu)

∫
z

1 + gu
ut−1

(
z

1 + gu

)
d

(
z

1 + gu

)
= φ(1− σ)(1 + ge)Zet−1 + φλw(θt)(1 + gu)Zut−1,

where the second and fourth equalities follow from simple algebra and the definitions of Zet−1 and
Zut−1 whereas the third equality follows from the change of variable from x = z to y = z/(1 + ge)

in the first integral, which is then multiplied by the Jacobian dx/dy = 1 + ge of this transformation,
and from the change of variable from z to z/(1 + gu) in the second integral, which is then multiplied
by the Jacobian dx/dy = 1 + gu of this transformation. (Recall that if X and Y = g(X) are two
continuous random variables with densities fX(x) and fY (y), then fY (y) = fX(x) det (dx/dy′).)

Similarly, we can derive the law of motion of the aggregate human capital of unemployed workers
Zut ≡

∫
zut(z)dz as

Zut =

∫
zet−1

(
z

1 + ge

)
φσ

1 + ge
dz +

∫
zut−1

(
z

1 + gu

)
φ[1− λw(θt)]

1 + gu
dz + (1− φ)

∫
zν(z)dz

= φσ

∫
z

1 + ge
et−1

(
z

1 + ge

)
dz + φ[1− λw(θt)]

∫
z

1 + gu
ut−1

(
z

1 + gu

)
dz + (1− φ)

∫
zν(z)dz

= φσ(1 + ge)

∫
z

1 + ge
et−1

(
z

1 + ge

)
d

(
z

1 + ge

)
+ φ[1− λw(θt)](1 + gu)

∫
z

1 + gu
ut−1

(
z

1 + gu

)
d(

z

1 + gu
) + (1− φ)

∫
zν(z)dz

= 1− φ+ φσ(1 + ge)Zet−1 + φ[1− λw(θt)](1 + gu)Zut−1,

where, as before, the second and fourth equalities follow by simple algebra whereas the third equality
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follows from the change of variable from z to z/(1 + ge) in the first integral and from z to z/(1 + gu)

in the second integral, and in the fourth equality we used that the mean of the human capital of
newborns,

∫
zν(z)dz = 1.

A.4 Effi ciency of Competitive Search Equilibrium

We start by characterizing the solution to the planning problem: choose {C(st), Ze(s
t), Zu(s

t), θ(st)}
to solve

max

∞∑
t=0

∑
st

βtπ(st)[C(st)−Xt(s
t)]1−α/(1− α),

subject to the constraints

λ(st) : C(st) ≤ A(st)Ze(s
t) + bA(st)Zu(s

t)− φ(1 + gu)κA(st)θ(st)Zut−1(st−1),

λ(st)µe(s
t) : Ze(s

t) ≤ φ(1 + ge)(1− σ)Ze(s
t−1) + φ(1 + gu)λw(θ(st))Zu(s

t−1),

and
λ(st)µu(s

t) : Zu(s
t) ≤ 1− φ+ φ(1 + ge)σZe(s

t−1) + φ(1 + gu)[1− λw(θ(st))]Zu(s
t−1)

for all t = 0, . . . ,∞ and st. The optimality conditions of the planning problem are

Ct(s
t) : λ(st) = βtπ(st)

(
C(st)−X(st)

)−α
, (18)

Ze(s
t) : λ(st)µe(s

t) = λ(st)A(st) + φ(1 + ge)
∑
st+1

λ(st+1)
[
(1− σ)µe(s

t+1) + σµu(s
t+1)
]
, (19)

Zut(s
t) : λ(st)µu(s

t) = λ(st)bAt(s
t)− φ(1 + gu)

∑
st+1

λ(st+1)κA(st+1)θ(st+1) (20)

+φ(1 + gu)
∑
st+1

λ(st+1){λw(θ(st+1))µe(s
t+1) + [1− λw(θ(st+1))]µu(s

t+1)},

and

θ(st) : λ(st)φ(1 + gu)κA(st)Zut−1(st−1) = λ(st)
[
µe(s

t)− µu(st)
]
φ(1 + gu)Zu(s

t−1)λ′w(θ(st)). (21)

To eliminate the multipliers λ(st) and λ(st+1), we use (18) and that π(st+1|st) ≡ π(st+1)/π(st) to
write

λ(st+1)/λ(st) =
π(st+1)β[C(st+1)−X(st+1)]−α

π(st)[C(st+1)−X(st+1)]−α
≡ π(st+1|st)Qt,t+1(st+1)

and then divide (19), (20), and (21) by λ(st) and use (11) to obtain

µe(s
t) = A(st) + φ(1 + ge)

∑
st+1

λ(st+1)

λ(st)

[
(1− σ)µe(s

t+1) + σµu(s
t+1)
]

= A(st) + φ(1 + ge)
∑
st+1

π(st+1|st)Qt,t+1(st+1)
[
(1− σ)µe(s

t+1) + σµu(s
t+1)
]
,
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µu(s
t) = bAt(s

t)− φ(1 + gu)
∑
st+1

π(st+1|st)Qt,t+1(st+1)κA(st+1)θ(st+1)

+φ(1 + gu)
∑
st+1

π(st+1|st)Qt,t+1(st+1){λw(θ(st+1))µe(s
t+1) + [1− λw(θ(st+1))]µu(s

t+1)},

and
κA(st) =

[
µe(s

t)− µu(st)
]
λ′w(θ(st)).

Dropping the notation for st and the explicit dependence of λwt and λft on θt, we have

µet = At + φ(1 + ge)EtQt,t+1

[
(1− σ)µet+1 + σµut+1

]
, (22)

µut = bAt − φ(1 + gu)Et [Qt+1κAt+1θt+1] + φ(1 + gu)Et
[
Qt,t+1[λwt+1µet+1 + (1− λwt+1)µut+1]

]
, (23)

and
κAt = (µet − µut)λ′wt = (1− ηt)λft(µet − µut), (24)

where to obtain the second equality, we used (3). Now, we want to show that (23) reduces to

µut = bAt + φ(1 + gu)EtQt,t+1[ηt+1λwt+1µet+1 + (1− ηt+1λwt+1)µut+1]. (25)

To do so, we substitute λ′wt+1 = (1 − ηt+1)λwt+1/θt+1 from (2) to rewrite the first equality in the
free-entry condition (24) at t+ 1 as

κAt+1θt+1 = (µet+1 − µut+1)(1− ηt+1)λwt+1

and substitute this into (23) to obtain

µut = bAt + φ(1 + gu)Et
[
Qt,t+1(µut+1 − µet+1)(1− ηt+1)λwt+1

]
+φ(1 + gu)Et

[
Qt,t+1{λwt+1µet+1 + [1− λwt+1]µut+1}

]
,

which simplifies to (25).

Proposition 1 (Effi ciency of Competitive Search Equilibrium). The competitive search equi-
librium allocations solve the planning problem.

Proof. We have just shown that the optimality conditions of the planning problem are (22), (25),
and (24) repeated here

µut = bAt + φ(1 + gu)EtQt,t+1{ηt+1λwt+1µet+1 + [1− ηt+1λwt+1]µut+1}, (26)

µet = At + φ(1 + ge)EtQt,t+1

[
(1− σ)µet+1 + σµut+1

]
, (27)

κAt = (1− ηt)λft(µet − µut), (28)

where Qt,t+1 = β[St+1Ct+1/(StCt)]
−α. Hence, a solution to the planning problem is completely char-

acterized by these three conditions along with the original constraints to the problem, namely, the
resource constraint and the transition laws for Zet and Zut. The competitive search equilibrium is
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completely characterized by the equations given in Lemma 1 in the paper namely,

Wpt = φ(1− σ)(1 + ge)EtQt,t+1Wpt+1 + φσ(1 + ge)EtQt,t+1Ut+1, (29)

Ut = bAt + φ(1 + gu)EtQt,t+1λwt+1(Wmt+1 +Wpt+1) + φ(1 + gu)EtQt,t+1[1− λwt+1]Ut+1, (30)

Yt = At + φ(1− σ)(1 + ge)EtQt,t+1Yt+1, (31)

κAt = λft (Yt −Wmt) , (32)

0 =
λ′wt
λwt

(Wmt +Wpt − Ut) +
λ′ft
λft

(Yt −Wmt), (33)

along with the the resource constraint and the transition laws for Zet and Zut. We argue that by
suitably redefining the variables {Wmt,Wpt, Ut, Yt} in the competitive search equilibrium in terms of
the variables {µet, µut} and the allocations in the planning problem, we can show that (29)-(33) are
identical to (26)-(28). We conclude that the solution to the planning problem and the allocations in
the competitive search equilibrium coincide.

We now claim that if we replace Yt+Wpt with µet and Ut with µut, then equations (29)-(33) reduce
to equations (26)-(28) so the allocations in the competitive search equilibrium solve the planning
problem. To establish this claim, we first use (2), namely,

λ′wt
λwt

=
1− ηt
θt

and
λ′ft
λft

= −ηt
θt
,

to rewrite (33), which after multiplying both sides by θt > 0, is

(1− ηt)(Wmt +Wpt − Ut)− ηt(Yt −Wmt) = 0 (34)

so
ηt(Yt −Wmt) = (1− ηt)[Yt +Wpt − Ut − (Yt −Wmt)].

Adding (1− ηt)(Yt −Wmt) to both sides gives

Yt −Wmt = (1− ηt)(Yt +Wpt − Ut). (35)

Using this equation to substitute for Yt −Wmt in (34) further gives

(1− ηt)(Wmt +Wpt − Ut) = ηt(1− ηt)(Yt +Wpt − Ut)

and dividing by 1− ηt gives

Wmt +Wpt − Ut = ηt(Yt +Wpt − Ut).

Adding Ut to both sides then yields

Wmt +Wpt = ηt(Yt +Wpt) + (1− ηt)Ut. (36)

10



Now use this expression for Wmt +Wpt to substitute for Wmt+1 +Wpt+1 in (30)

Ut = bAt + φ(1 + gu)EtQt,t+1λwt+1[ηt+1(Yt+1 +Wpt+1) + (1− ηt+1)Ut+1]

+φ(1 + gu)EtQt,t+1[1− λwt+1]Ut+1

= bAt + φ(1 + gu)EtQt,t+1λwt+1ηt+1(Yt+1 +Wpt+1)

+φ(1 + gu)EtQt,t+1[λwt+1(1− ηt+1) + 1− λwt+1]Ut+1

= bAt + φ(1 + gu)EtQt,t+1λwt+1ηt+1(Yt+1 +Wpt+1)

+φ(1 + gu)EtQt,t+1(1− λwt+1ηt+1)Ut+1 (37)

and so using that µet+1 = Yt+1 +Wpt+1 and µut+1 = Ut+1 in this last equation gives

µut = bAt + φ(1 + gu)Et[Qt,t+1[λwt+1ηt+1µet+1 + (1− λwt+1ηt+1)µut+1]],

namely, (26). Proceeding similarly, note that by summing Yt and Wpt from (31) and (29), we obtain

Yt +Wpt = At + φ(1 + ge)Et[Qt,t+1[(1− σ)(Yt+1 +Wpt+1) + σUt+1]] (38)

and so using that µet = Yt +Wpt and µut = Ut, we obtain

µet = At + φ(1 + ge)Et[Qt,t+1[(1− σ)µet+1 + σµut+1]],

namely, (27). Now use (35), µet = Yt +Wpt, and µut = Ut to rewrite (32) as

κAt = λft (Yt −Wmt) = λft(1− ηt)(Yt +Wpt − Ut) = (1− ηt)λft(µet − µut), (39)

namely, (28). Thus, the equations characterizing the competitive search equilibrium allocations co-
incide with those characterizing the solution to the planning problem. Hence, the allocations in the
competitive search equilibrium solve the planning problem.

Alternative Proof. An alternative way to prove this proposition consists of two steps. In Step 1,
we directly calculate the allocations that solve the planning problem. In Step 2, we directly calculate
the competitive search equilibrium allocations. By inspection, we will see that these allocations are
identical.

Step 1: Directly calculate the conditions that the planning problem satisfies. To do so, we define
µ̃et = µet/At and µ̃ut = µut/At and express the dynamical system for the multipliers (26) and (27) in
matrix form as [

µ̃et
µ̃ut

]
=

[
1

b

]
+ Et

{
Ψ(θt+1)Qt,t+1

At+1

At

[
µ̃et+1

µ̃ut+1

]}
, (40)

where

Ψ(θt+1) ≡
[
φ(1 + ge)(1− σ) φ(1 + ge)σ

φ(1 + gu)ηλw(θt+1) φ(1 + gu) [1− ηλw(θt+1)]

]
.

11



Then, we solve out this system for a formula for µ̃et − µ̃ut in terms of allocations as follows,[
µ̃et
µ̃ut

]
=

[
1

b

]
+ Et

[
Ψ(θt+1)Qt,t+1

At+1

At

([
1

b

]
+ Et+1

{
Ψ(θt+2)Qt+1,t+2

At+2

At+1

[
µ̃et+2

µ̃ut+2

]})]
=

[
1

b

]{
1 + Et

[
Ψ(θt+1)Qt,t+1

At+1

At
+ Ψ(θt+1)Ψ(θt+2)Qt,t+2

At+2

At

]}
+Et

{
Ψ(θt+1)Ψ(θt+2)Qt,t+2

At+2

At

[
µ̃et+2

µ̃ut+2

]}
=

[
1

b

](
1 + Et

{
T∑

s=t+1

Ψ(θt+1) · · ·Ψ(θs)Qt,s
As
At

+ Ψ(θt+1)Ψ(θt+2) · · ·Ψ(θT )Qt,T
AT
At

[
µ̃eT
µ̃uT

]})

=

[
1

b

]{
1 + Et

[ ∞∑
s=t+1

Ψ(θt+1) · · ·Ψ(θs)Qt,s
As
At

]}
, (41)

where in the second line we used the law of iterated expectations, EtEt+1xt+2 = Etxt+2, and that
Qt,t+2 = Qt,t+1Qt+1,t+2, and in the last line we used the limiting condition

lim
T→∞

Et
{

Ψ(θt+1)Ψ(θt+2) · · ·Ψ(θT )Qt,T
AT
At

[
µ̃eT
µ̃uT

]}
=

[
0

0

]
.

Now, to obtain a formula for µ̃et − µ̃ut, we premultiply both sides of (41) by the vector
[

1 −1
]
to

obtain

µ̃et − µ̃ut =

{
1− b+ Et

∞∑
s=t+1

[Ψ(θt+1) · · ·Ψ(θs)]Qt,s
As
At

(1− b)
}
, (42)

which, when substituted into (105), gives that the stochastic process for job-finding rates satisfies

κ = (1− η)λft(θt)

{
1− b+ Et

∞∑
r=t+1

[Ψ(θt+1) · · ·Ψ(θr)]Qt,r
Ar
At

(1− b)
}
, (43)

where

Qt,r = βr−t
(
Sr
St

Cr
Ct

)−α
(44)

and st = log(St) follows
st+1 = (1− ρs) s+ ρsst + λa(st)σaεat+1, (45)

Ct follows
Ct = AtZet + bAtZut − κAtφθt(1 + gu)Zut−1, (46)

and Zet and Zut follow

Zet = φ (1− σ) (1 + ge)Zet−1 + φλwt(θt) (1 + gu)Zut−1, (47)

and
Zut = φσ (1 + ge)Zet−1 + φ (1− λwt(θt)) (1 + gu)Zut−1 + 1− φ. (48)
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Here conditions (43)-(48) completely characterize the solution to the planning problem for any initial
conditions Ze,−1 and Zu,−1.

Step 2. Directly calculate the conditions that the competitive search equilibrium satisfies. We can
write the dynamical system (38) and (37) for the values Ỹt + W̃pt ≡ (Yt +Wpt)/At and Ũt ≡ Ut/At in
matrix form as [

Ỹt + W̃pt

Ũt

]
=

[
1

b

]
+ Et

{
Ψ(θt+1)Qt,t+1

At+1

At

[
Ỹt+1 + W̃pt+1

Ũt+1

]}
and follow the identical manipulations from (40) to (42) to arrive at

Ỹt + W̃pt − Ũt =

{
1− b+ Et

∞∑
s=t+1

[Ψ(θt+1) · · ·Ψ(θs)]Qt,s
As
At

(1− b)
}
. (49)

Now substituting the answer for Ỹt + W̃pt − Ũt in (49) into the free-entry condition (39) expressed as

κ = λft(1− ηt)(Ỹt + W̃pt − Ũt),

along with the resource constraints and laws of motion for Zet and Zut, yields the identical equations
(43)-(48), which completely characterize the solution to the planning problem. Hence, the allocations
coincide.

A.5 Constant Job-Finding Rate Under CRRA

Proposition 2 (Constant Job-Finding Rate and Unemployment Under CRRA). Starting
from the steady-state values of the total human capital of employed and unemployed workers, Ze and
Zu, with preferences of the form E0

∑∞
t=0 β

tC1−α
t /(1−α), both the job-finding rate and unemployment

are constant.

Proof. Here we show that with CRRA utility and random-walk productivity, job-finding rates are
constant in our competitive search equilibrium, where

µ̃ut = µ̃u, µ̃et = µ̃e, θt = θ, C̃t = C̃, Zet = Ze, and Zut = Zu (50)

and variables with ‘̃’are scaled by productivity. We do so by showing that the equations characterizing
the solution to the planning problem, namely, (26)-(28) along with that problem’s constraints admit
a solution of the form just described. To this purpose, consider first the difference equation for the
value of employment, (27). Now substitute Et(Qt,t+1) = βEt (Ct+1/Ct)

−α to obtain

µet = At + φ(1 + ge)βEt

{(
Ct+1

Ct

)−α [
(1− σ)µet+1 + σµut+1

]}
, (51)

which after dividing both sides by At gives

µet
At

= 1 + φ(1 + ge)βEt

{(
Ct+1/At+1

Ct/At

At+1

At

)−α
At+1

At

[
(1− σ)

µet+1

At+1

+ σ
µut+1

At+1

]}
.
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Using µ̃et = µet/At, µ̃et = µet/At, and C̃t = Ct/At, we further obtain

µ̃et = 1 + φ(1 + ge)βEt

{(
At+1

At

)1−α
(
C̃t+1

C̃t

)−α [
(1− σ)µ̃et+1 + σµ̃ut+1

]}

or, equivalently,

µ̃et = 1 + φ(1 + ge)βEt

{
e(1−α)(ga+εat+1)

(
C̃t+1

C̃t

)−α [
(1− σ)µ̃et+1 + σµ̃ut+1

]}
, (52)

where in the last step we used that log(At+1) = ga + log(At) + εat+1 implies(
At+1

At

)1−α

= e(1−α)(ga+εat+1). (53)

At our conjectured solution, (50) implies that (52) becomes

µ̃e = 1 + φ(1 + ge)δ [(1− σ)µ̃e + σµ̃u] (54)

with δ ≡ βe(1−α)ga+(1−α)2σ2a/2, since εat+1 distributed as N(0, σ2
a) implies that

Ete(1−α)(ga+εat+1) = e(1−α)ga+(1−α)2σ2a/2.

Proceeding in a similar fashion with (26) gives

µ̃ut = b+ φ(1 + gu)Et

((
At+1

At

)1−α
(
C̃t+1

C̃t

)−α
{λw(θt+1)ηt+1µ̃et+1 + [1− ηt+1λw(θt+1)]µ̃ut+1}

)
,

which using (53) simplifies to

µ̃ut=b+φ(1+gu)βEt

(
e(1−α)(ga+εat+1)

(
C̃t+1

C̃t

)−α
{λw(θt+1)η(θt+1)µ̃et+1+[1− η(θt+1)λw(θt+1)]µ̃ut+1}

)
.

(55)
At our conjectured solution, (50) implies that (55) becomes

µ̃u = b+ φ(1 + gu)δ [λw(θ)η(θ)µ̃e + (1− η(θ)λw(θ))µ̃u] . (56)

Also, evaluated at this conjectured solution, the resource constraint and the transition equations for
Zet and Zut are

C̃ = Zet + bZu − κφ(1 + gu)Zu, (57)

Ze = φ(1 + ge)(1− σ)Ze + φ(1 + gu)λwZu, (58)

Zu = 1− φ+ φ(1 + ge)σZe + φ(1 + gu)(1− λw)Zu. (59)

Hence, the system of equations for the economy admits a solution given by (54), (56), (57), (58), and
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(59), in which all variables are constant and the initial conditions for Zet and Zut are equal to the
posited constants Ze and Zu.

A.6 Job-Findings Rates with Human Capital Depreciation

In most of the paper, we have assumed that gu = 0 for algebraic simplicity. Here we state and prove
Proposition 3 for the general case when gu is nonzero. Recall that to develop intuition for the solution
to the dynamical system (22) and (23), we considered an approximation to it in which we ignore the
variation in future job-finding rates, λw(θs) = λw(θ) for s > t, for a given θ. The formulas we derive
for any choice of θ.

Proposition 3 (Job-Finding Rate). The job-finding rate approximately satisfies

log(λwt) = χ+

(
1− η
η

)
log

[ ∞∑
n=0

(c`δ
n
` + csδ

n
s )
Pnt
At

]
, (60)

where χ is a constant,

δ`,s = φ(1 + gu + λ)/2± φ[(1 + gu − λ)2 + 4ηλw(1 + gu)(ge − gu)]1/2/2 (61)

with λ ≡ (1− σ) (1 + ge)− ηλw(1 + gu), and

c` =
(φλ− δs)(1− b) + φ(ge − gu)b

δ` − δs
and cs = 1− b− c`. (62)

Proof . Consider the system [
µet
µut

]
=
∞∑
n=0

Ψn

[
1

b

]
EtQt,t+nAt+n, (63)

where Ψ is the transition matrix given by

Ψ =

[
φ(1 + ge)(1− σ) φ(1 + ge)σ

φ(1 + gu)ηλw φ(1 + gu)(1− ηλw)

]
.

Letting V be the matrix of eigenvectors, we can decompose Ψn as

Ψn = V

[
δn` 0

0 δns

]
V −1, with ΨV = V

[
δ` 0

0 δs

]
,

where the eigenvalues of Ψ are given by

δ` =
tr(Ψ)

2
+

1

2

√
tr(Ψ)2 − 4det(Ψ) and δs =

tr(Ψ)

2
− 1

2

√
tr(Ψ)2 − 4det(Ψ),

with
tr(Ψ) = φ(1 + ge)(1− σ) + φ(1 + gu)(1− ηλw)

and
det(Ψ) = φ2(1 + ge)(1 + gu)(1− σ − ηλw).
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Solving this out explicitly, we obtain

δ`,s =
φ(1 + gu + λ)

2
± φ

2

√
(1 + gu − λ)2 + 4ηλw(1 + gu)(ge − gu) (64)

=

φ(1 + gu) + φ
2

[√
(1 + gu − λ)2 + 4ηλw(1 + gu)(ge − gu)−

√
(1 + gu − λ)2

]
φλ− φ

2

[√
(1 + gu − λ)2 + 4ηλw(1 + gu)(ge − gu)−

√
(1 + gu − λ)2

] , (65)

where in (65) we used

φ(1 + gu + λ)

2
= φ(1 + gu)−

φ

2
(1 + gu − λ) and

φ(1 + gu + λ)

2
= φλ+

φ

2
(1 + gu − λ).

Now, note that [
1 −1

]
V

[
δn` 0

0 δns

]
V −1

[
1

b

]
=δn` c` + δns cs, (66)

that is, the left-side of (66) has the form of a sum of the roots δn` and δ
n
s multiplied by some unknown

constants c` and cs. To derive the constants c` and cs, we evaluate (66) for the first two periods n = 0

and n = 1 to obtain two equations in two unknowns, namely, for n = 0,

[
1 −1

] [1
b

]
= 1− b = c` + cs (67)

and for n = 1,

[
1 −1

]
Ψ

[
1

b

]
= φ[(1 + ge)(1− σ)− ηλw(1 + gu)](1− b) + φ(ge − gu)b

= φλ(1− b) + φ(ge − gu)b = c`δ` + csδs. (68)

Solving these two equations for c` and cs gives (62). (Observe that by using (67) and (68), we have
avoided having to explicitly solve for the eigenvectors in V associated with the roots δ` and δs.)

To solve for the constant χ, note that m(ut, vt) = Buηt v
1−η
t implies that λ1−η

ft = Bλ−ηwt since

λ1−η
ft =

(
Buηt v

1−η
t

vt

)1−η

= B1−η
[(

ut
vt

)η]1−η

and

Bλ−ηwt = B

(
Buηt v

1−η
t

ut

)−η
= B1−η

[(
ut
vt

)η−1
]−η

= B1−η
[(

ut
vt

)η]1−η

.

Next, note that λ1−η
ft = Bλ−ηwt implies that λft = B

1
1−ηλ

− η
1−η

wt , which we substitute into (28) to obtain

κAt = (1− η)
(
B

1
1−ηλ

− η
1−η

wt

)
(µet − µut),

so

λ
η

1−η
wt =

(
1− η
κ

)
B

1
1−η

(
µet − µut

At

)
.
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Raising both sides to the (1− η)/η power, we obtain

λwt =

[(
1− η
κ

)
B

1
1−η

] 1−η
η
(
µet − µut

At

) 1−η
η

and taking logs

log(λwt) =
1− η
η

log

[(
1− η
κ

)
B

1
1−η

]
+

1− η
η

log

(
µet − µut

At

)
,

so

χ =
1− η
η

log

[(
1− η
κ

)
B

1
1−η

]
.

This concludes the proof.

A.7 Price of Productivity Claims

We apply the risk-adjusted affi ne approximation around the risky steady state described by Lopez
et al. (2017) to the pricing equation for claims to productivity in n periods, which can be written
recursively as

Pnt
At

= E
(
Qt,t+1

At+1

At

Pn−1,t+1

At+1

)
(69)

with P0t = At or, in logs,

log

(
Pnt
At

)
= log {Et [exp (qt,t+1 + ∆at+1 + log(Pn−1,t+1/At+1))]} , (70)

where qt,t+1 = log(Qt,t+1) and ∆at+1 = log(At+1) − log(At). Now, defining ŝt = st − s, use the
approximation

log

(
Pnt
At

)
= an + bnŝt (71)

to rewrite both sides of (70) to obtain

an + bnŝt = log {Et [exp (qt,t+1 + ∆at+1 + an−1 + bn−1ŝt+1)]} . (72)

We next use (72) to derive a recursion for an and bn to establish Lemma 2 in the paper. (Note that
here this approximation does not depend on the point θ about which it is taken, so the use of the risky
steady state versus a deterministic steady state does not matter. In contrast, the suffi cient statistic
result in Proposition 4 will depend on the point θ.)

Lemma 2 (Price of Productivity Claims). The price of a claim to productivity in n periods
approximately satisfies

log

(
Pnt
At

)
= an + bn(st − s), (73)

where a0 = b0 = 0,

an = log(β) + (1− α)ga + an−1 + [1− bn−1 − (α− bn−1)/S]2 σ2
a/2, (74)
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and bn satisfies

bn = α(1− ρs) + ρsbn−1 +

(
1− bn−1 −

α− bn−1

S

)(
α− bn−1

S

)
σ2
a. (75)

Under the assumption that α > 1 and 1− ρs +
(
1− α

S

) σ2a
S
> 0, the coeffi cients bn grow monotonically

with n and converge to α.

Proof. The idea of the proof is to write out the terms on the right side of (72), evaluate them, and
then match up the undetermined coeffi cients of the constants and the terms in ŝt on both sides of
(72). Doing so will give the recursive formulas for an and bn in (74) and (75).

Now, the pricing kernel for our baseline preferences in log form is

qt,t+1 = log(β)− α∆ct+1 − α∆st+1, (76)

with ∆at+1 = ga + σaεat+1, and the law of motion for ŝt is

ŝt+1 = ρsŝt + λa(st)σaεat+1 (77)

so
∆ŝt+1 = (ρs − 1)ŝt + λa(st)σaεat+1. (78)

The approximation that ∆ct+1 = ∆at+1, (78), and ∆st+1 = ∆ŝt+1 imply that we can write the
argument inside the expectation in (72) as

qt,t+1 + ∆at+1 + an−1 + bn−1ŝt+1

= [log(β)− α∆at+1 − α∆st+1] + ∆at+1 + an−1 + bn−1ŝt+1

= {log(β)− α∆at+1 − α[(ρs − 1)ŝt + λa(st)σaεat+1]}+ ∆at+1 + an−1 + bn−1[ρsŝt + λa(st)σaεat+1]

= log(β) + (1− α)(ga + σaεat+1) + [bn−1ρs − α(ρs − 1)] ŝt + an−1 + (bn−1 − α)λa(st)σaεat+1

= log(β) + (1− α)ga + [bn−1ρs − α(ρs − 1)]ŝt + an−1 + {1− α[1 + λa(st)] + bn−1λa(st)}σaεat+1.

(79)

Next, we evaluate the right side of (72) using the equality in (79). Note first that, except for the last
term, all of the variables in (79) are known at t so that

log[Et(exp{log(β) + (1− α)ga + [bn−1ρs − α(ρs − 1)] ŝt + an−1})]
= log(β) + (1− α)ga + [bn−1ρs − α(ρs − 1)] ŝt + an−1. (80)

For the last term in (79), we use that the conditional expectation of a log-normal random variable
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with mean 0 and variance σ2 is expσ2/2 so that

log[Et(exp{1− α[1 + λa(st)] + bn−1λa(st)}σaεat+1)]

=
σ2
a

2
{1− α[1 + λa(st)] + bn−1λa(st)}2

∼=
σ2
a

2
{1− α[1 + λa(s)] + bn−1λa(s)}2 + (σ2

a (bn−1 − α)λ′a(s){1− α[1 + λa(s)] + bn−1λa(s)})ŝt

=

[
1− α

S
+ bn−1

(
1

S
− 1

)]2
σ2
a

2
+ σ2

a

(α− bn−1)

S

[
1− α

S
+ bn−1

(
1

S
− 1

)]
ŝt

=

(
1− bn−1 −

α− bn−1

S

)2
σ2
a

2
+ σ2

a

(
1− bn−1 −

α− bn−1

S

)(
α− bn−1

S

)
ŝt, (81)

where in the third line we have performed a first-order approximation around st = s and in the fourth
line we have used that in a steady state,

λa(st) =
1

S
[1− 2 (st − s)]1/2 − 1 (82)

satisfies
1 + λa(s) = 1/S and λ′a(s) = −1/S. (83)

Adding (80) and (81) and grouping together the constants and the terms in ŝt, we have that

log{Et[exp (qt,t+1 + ∆at+1 + an−1 + bn−1ŝt+1)]}

= log(β) + (1− α)ga + an−1 +

(
1− bn−1 −

α− bn−1

S

)2
σ2
a

2

+

[
α(1− ρs) + ρsbn−1 +

(
1− bn−1 −

α− bn−1

S

)(
α− bn−1

S

)
σ2
a

]
ŝt. (84)

Now we are ready to use the recursion in (72), namely,

an + bnŝt = log{Et[exp (qt,t+1 + ∆at+1 + an−1 + bn−1ŝt+1)]}.

Matching up the constants and the coeffi cients of ŝt on both sides of this equation using (84) gives

an = log(β) + (1− α)ga + an−1 +

(
1− bn−1 −

α− bn−1

S

)2
σ2
a

2

and

bn = α(1− ρs) + ρsbn−1 +

(
1− bn−1 −

α− bn−1

S

)(
α− bn−1

S

)
σ2
a,

which are the formulas in (74) and (75) above.

Finally, to establish the claim that the assumptions that α > 1 and 1− ρs +
(
1− α

S

) σ2a
S
> 0 imply

that the coeffi cients bn grow monotonically from 0 to α, we rearrange the formula for bn as

bn − bn−1 = (α− bn−1)φ(bn−1), (85)
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where

φ(bn−1) ≡ 1− ρs +
(

1− α

S

) σ2
a

S
+ bn−1

(
1− S
S

)
σ2
a

S
(86)

so φ(bn−1) is a strictly increasing function on (0, α). We first note that if bn converges to b∗, then from
(85), b∗ solves the quadratic equation (α− b∗)φ(b∗) = 0, for which the relevant root is the positive one
with b∗ = α. We now show that if α > 1 and 1−ρs+

(
1− α

S

) σ2a
S
> 0, then bn converges monotonically

to α from 0. Note first that these two conditions imply that φ(bn−1) > 0 for all bn−1 ≥ 0 because
S ≤ 1 and

φ(α) = 1− ρs + (1− α)
σ2
a

S
∈ (0, 1). (87)

Clearly, φ(α) ≥ 0 because S ≤ 1 implies φ(α) = 1 − ρs + (1− α) σ2a
S
≥ 1 − ρs +

(
1− α

S

) σ2a
S
> 0, and

φ(α) ≤ 1 because α > 1 implies that the second term in (87) is negative.

Next, we claim that if bn−1 ∈ [0, α], then bn ≥ bn−1 and bn ∈ [0, α]. To prove this claim, note that
since φ(·) is an increasing function and bn−1 ∈ [0, α], then φ(bn−1) ≤ φ(α). It then follows that

bn = bn−1 + (α− bn−1)φ(bn−1) ≤ bn−1 + (α− bn−1)φ(α) = [1− φ(α)]bn−1 + φ(α)α ≤ α, (88)

where the last inequality follows because [1− φ(α)]bn−1 + φ(α)α is a convex combination of bn−1 and
α. Moreover, bn ≥ bn−1 since (α − bn−1)φ(bn−1) ≥ 0. Hence, we have established that bn ≥ bn−1 and
bn ∈ [0, α].

From this claim, it follows that since b0 = 0 ∈ [0, α], then bn ≥ bn−1, so the series increases
monotonically, and bn ∈ [0, α] for all n. Since bn is bounded above by α, the series converges. Since bn
is always nonnegative, the series converges to the relevant stationary point of (85), namely, b∗ = α.

A.8 Suffi cient Statistic for Job-Finding Rate Volatility

In what follows, we define the risky steady state as in Coeurdacier et al. (2011) and Lopez et al. (2017)
as the limit point of the deterministic system in which all shocks are zero but in which agents expect
shocks to be realized according to their true distribution and agents’ approximate decision rules
are computed using a first-order approximation around this point. Mechanically, the risky steady
state for market tightness θt is simply the mean value of log(θt) under our log-linear approximation
log(θt) = log(θ) + ψθŝt and thus is log(θ).

Proposition 4 (Suffi cient Statistic for Job-Finding Rate Volatility). Under the approximation
in Lemma 2, the response of the job-finding rate to a change in st evaluated at a risky steady state is
given by

d log(λwt)

dst
=

(
1− η
η

) ∞∑
n=0

ωnbn with ωn =
ean(c`δ

n
` + csδ

n
s )∑∞

n=0 e
an(c`δ

n
` + csδ

n
s )
, (89)

where an and bn are given in Lemma 2 and the standard deviation of the job-finding rate σ(λwt)satisfies

σ(λwt) =
d log(λwt)

dst
σ(st). (90)
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Proof. Substitute Pnt/At = ean+bnŝt from Lemma 2 into (60) in Proposition 3 to obtain

log(λwt) = χ+
1− η
η

log

[ ∞∑
n=0

(c`δ
n
` + csδ

n
s )ean+bn(st−s)

]
(91)

∼= χ+
1− η
η

log

[ ∞∑
n=0

(c`δ
n
` + csδ

n
s )ean

]
+

1− η
η

[ ∞∑
n=0

(c`δ
n
` + csδ

n
s )ean∑∞

n=0(c`δ
n
` + csδ

n
s )ean

bn

]
(st − s)

= const+
1− η
η

( ∞∑
n=0

ωnbn

)
(st − s). (92)

Denoting the right-side of (11) by f(st), in (92) we took a first-order Taylor expansion of this right
side around s using f(st) ∼= f(s) + f ′(s)(st− s). Differentiating this last expression, (89) and (90) are
immediate.

Here we expand on the risky steady state of the log-linear model. The proposition just established
holds for any point θ at which we take our first-order expansion. But it is logically most consistent
to take it around the risky steady state of the log-linear model, as we will explain below. We start
by showing how that state is calculated.

A. Computing the risky steady state. Since we will take a first-order expansion around θt, it is
convenient to begin by rewriting the free-entry condition

κAt = (1− ηt)λft(µet − µut) (93)

in terms of θt rather than λft. Using λf = Bθ−η, we obtain

θη =
B(1− ηt)

κ

(
µet − µut

At

)
,

so that we can write (93) as

log(θt) =
1

η
log

[
B(1− ηt)

κ

]
+

1

η
log

(
µet − µut

At

)
. (94)

Hence, using (94), we can write (60) in terms of θt as

log(θt) =
1

η
log

[
B(1− η)

κ

]
+

1

η
log

[ ∞∑
n=0

(c`δ
n
` + csδ

n
s )
Pnt
At

]
. (95)

We now take a first-order approximation to the log of the variables θt and Pnt/At around the risky
steady state θ. This first-order approximation for these variables has the same log-linear form in the
demeaned state ŝt. Hence,

log(θt) = log(θ) + ψθŝt and log

(
Pnt
At

)
= an + bnŝt. (96)
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To find this solution, substitute in (60) the expressions in (96) for all of these variables to obtain

log(θ) + ψθŝt =
1

η
log

[
B(1− η)

κ

]
+

1

η
log

[ ∞∑
n=0

(c`δ
n
` + csδ

n
s )ean+bnŝt

]
. (97)

Now, to find the risky steady state, namely, log(θ), set ŝt = 0 in (97) to obtain

log(θ) =
1

η
log

[
B(1− η)

κ

]
+

1

η
log

{ ∞∑
n=0

[c`(θ)δ`(θ)
n + cs(θ)δs(θ)

n] ean

}
, (98)

where we have made explicit that the roots δ`(θ) and δs(θ) and the constants c`(θ) and cs(θ) depend
on θ so that the risky steady state is the fixed point of (98). To solve for the slope term ψθ, we take a
first-order approximation of the general form f(st) = f(s) + f ′(s)(st− s) around θ at ŝt = 0 to obtain

log(θ) + ψθŝt =
1

η
log

[
B(1− η)

κ

]
+

1

η
log

[ ∞∑
n=0

(c`δ
n
` + csδ

n
s )ean

]
+

1

η

∞∑
n=0

(c`δ
n
` + csδ

n
s )eanbn∑∞

n=0(c`δ
n
` + csδ

n
s )ean

ŝt.

Then, matching the coeffi cients of ŝt on both sides gives

ψθ =
1

η

∞∑
n=0

[c`(θ)δ`(θ)
n + cs(θ)δs(θ)

n] eanbn∑∞
n=0 [c`(θ)δ`(θ)n + cs(θ)δs(θ)n] ean

. (99)

B. Why the risky steady state is the only point consistent with this approximation. Imagine that
we picked an arbitrary θ, say θ1, and consider log-linear rules of the form (96) but with the log-linear
rule for θt given by log(θt) = log(θ1) + ψθ1 ŝt, where ψθ1 is the expression in (99) evaluated at c`(θ1),
cs(θ1), δ`(θ1), and δs(θ1). If for some arbitrary θ1, we substitute these values for c`(θ1), cs(θ1), δ`(θ1),
and δs(θ1) into the approximation to obtain the right-side of (97), and take the means of both sides,
we obtain

log(θ2) =
1

η
log

[
B(1− η)

κ

]
+

1

η
log

{ ∞∑
n=0

[c`(θ1)δ`(θ1)n + cs(θ1)δs(θ1)n] ean

}
(100)

for some θ2 6= θ1. That is, if we take the approximation to the right side of (100) at any point
θ̃ other than the risky steady state, the process for log(θt) will not have a mean that is consistent
with the point θ about which we took the approximation. In this sense, the risky steady state has
a special property: it is the only point θ that is consistent with this approximation in the sense just
described. Hence, in this type of approximation, we need to solve for the point θ, about which we
are approximating, endogenously as part of the approximation, by solving the fixed point problem in
(98). This is the sense in which our approximation differs from many of the standard ones.

A.9 Extensions of Propositions 3 and 4

In the approximation given in Proposition 3 in the paper, we assumed that future λwt+s were constant
when we derived the dynamical system governing the multipliers (µet, µut). Here we do not make such
an approximation and state an extension of Proposition 3, which features more terms corresponding
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to those from the time-varying λwt+s, which are prices to two new strips involving θt+n as well as
At+n. Define then P θ

nt = Et(Qt,t+nAt+nθt+n) to be the prices of claims to assets that pay At+nθt+n
and P θη

nt = Et(Qt,t+nAt+nθ
1−ηθηt+n) to be the prices of claims to assets that pay At+nθ

1−ηθηt+n at t+n,
where θ is the market tightness in the risky steady state and we have used the Cobb-Douglas form of
the matching function.

Proposition 3’(Extension of Proposition 3). The job-finding rate satisfies

log(λwt) = χ+

(
1− η
η

)
log

[ ∞∑
n=0

(c`δ
n
` + csδ

n
s )
Pnt
At

+ (b`δ
n
` + bsδ

n
s )

(
P θ
n+1t

At
−
P θη

n+1t

At

)]
, (101)

where for τ ≡ φ(1 + ge)σ − φ(1 + gu)[1− ηλw(θ)],

bs = −φ(1 + gu)
κη

1− η
τ + δ`
δ` − δs

, b` = φ(1 + gu)
κη

1− η
τ + δs
δ` − δs

(102)

and the expressions for c`, cs, δ`, and δs are as before.

Notice that, in contrast to Proposition 3, this formula is exact since it involves no approximations.

Proof. Defining the scaled multipliers µ̃et ≡ µet/At and µ̃ut ≡ µut/At, we can write the first-order
conditions for the planning problem as

µ̃et = 1 + φ(1 + ge)Et
{
Qt,t+1

At+1

At

[
(1− σ)µ̃et+1 + σµ̃ut+1

]}
, (103)

µ̃ut = b+ φ(1 + gu)Et
(
Qt,t+1

At+1

At

{
ηλw(θt+1)µ̃et+1 + [1− ηλw(θt+1)] µ̃ut+1

})
, (104)

and
κ = (1− η)λft(θt)(µ̃et − µ̃ut). (105)

Thus, we can express (103) and (104) as a nonlinear matrix difference equation,[
µ̃et
µ̃ut

]
=

[
1

b

]
+ Et

{
Ψ(θt+1)Qt,t+1

At+1

At

[
µ̃et+1

µ̃ut+1

]}
, (106)

where the transition matrix Ψ(θt+1) is defined as

Ψ(θt+1) =

[
φ(1 + ge)(1− σ) φ(1 + ge)σ

φ(1 + gu)ηλw(θt+1) φ(1 + gu) [1− ηλw(θt+1)]

]
.

To understand what terms we dropped in Proposition 3 in the paper, define

Ψ(θ) ≡
[
φ(1 + ge)(1− σ) φ(1 + ge)σ

φ(1 + gu)ηλw(θ) φ(1 + gu) [1− ηλw(θ)]

]
for any (feasible) constant θ and rewrite (106) as[
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]
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]}
, (107)
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where we used the trivial identity

Ψ(θt+1) = Ψ(θ) + [Ψ(θt+1)−Ψ(θ)]. (108)

We show that when we solve (107), we end up with the formula in (101). Because of the identity in
(108), we obtain an identical value for λwt on the left side of (101) regardless of the value θ we select.
Mechanically, as we move from, say, θ1 to θ2, the roots δs(θi) and δ`(θi) adjust to offset the changes
in the strip prices P θ

nt = Et(Qt,t+nAt+nθt+n) and P θη

nt = θ1−ηEt(Qt,t+nAt+nθ
η
t+n).

In the paper, we omitted the third term in (107) of our approximation because setting future
λwt+s(θt+s) to the constant value λw(θ) is equivalent to setting Ψ(θt+s) = Ψ(θ). Now, to solve (107),
let us simplify the third term on the right side of (107). Noting that

Ψ(θt+1)−Ψ(θ) = φ(1 + gu)η [λw(θt+1)− λw(θ)]

[
0 0

1 −1

]
and that Qt,t+1 and At+1/At are scalars, we can write the third term on the right side of (107) as

Et
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{
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[
0

θt+1 − θηt+1θ
1−η

]}
, (110)

where in (110) we used that our matching function implies λw = Bθ1−η and λf = Bθ−η, so that

λw(θt+1)− λw(θ) = Bθ1−η
t+1 −Bθ1−η = Bθ−ηt+1(θt+1 − θηt+1θ

1−η) = λf (θt+1)(θt+1 − θηt+1θ
1−η)

=
κ

(1− η)(µ̃et+1 − µ̃ut+1)
(θt+1 − θηt+1θ

1−η), (111)

which implies that

[λw(θt+1)− λw(θ)] (µ̃et+1 − µ̃ut+1) =
κ

1− η (θt+1 − θηt+1θ
1−η), (112)
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and in (110) we used (112). Substituting for the third term in (107) using (110) gives[
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µ̃ut

]
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)
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where in the second line we solved the difference equation forward as we did earlier and in the third
line we substituted for the scaled strip prices, defined as

P̃nt = Et
(
Qt,t+n

At+n
At

)
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nt = Et
(
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At
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)
, and P̃ θη

nt = θ1−ηEt
(
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)
.

Thus, to evaluate µ̃et − µ̃ut, we premultiply both sides of (113) by
[
1 −1

]
to obtain

µ̃et−µ̃ut =
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[
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To evaluate (114), we need to evaluate the terms

[
1 −1

]
Ψ(θ)n

[
1

b

]
= c`δ

n
` + csδ

n
s and
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]
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n
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n
s , (115)

that is, the left side of the left equation in (115) has the form of a sum of the roots δn` and δ
n
s multiplied

by some unknown constants c` and cs, and the left side of the right equation has a similar form but
with the unknown constants b` and bs.

We proceed as before. We decompose Ψ(θ) into eigenvectors V and eigenvalues as

Ψ(θ)n = V

[
δn` 0

0 δns

]
V −1 with Ψ(θ)V = V

[
δ` 0

0 δs

]
.

Hence, the constants c` and cs are the same as before. To solve for the constants b` and bs, we evaluate
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at n = 0 to obtain one equation in b` and bs,
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] [0
1

]
= −φ(1 + gu)κη

1− η = b` + bs,
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namely,
b` + bs = −ω, (117a)

where ω ≡ φ(1 + gu)κη/(1− η). Evaluating (116) at n = 1 gives the second equation in b` and bs,
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[
1 −1

]
Ψ(θ)

[
0

1

]
=
φ(1 + gu)κη

1− η
[
1 −1

] [φ(1 + ge)(1− σ) φ(1 + ge)σ

ηλw(θ)φ(1 + gu) φ(1 + gu)(1− ηλw(θ))

] [
0

1

]
=
φ(1 + gu)κη

1− η
[
1 −1

] [ φ(1 + ge)σ

φ(1 + gu)(1− ηλw(θ))

]
=
φ(1 + gu)κη

1− η [φ(1 + ge)σ − φ(1 + gu)(1− ηλw(θ))] ,

namely,
b`δ` + bsδs = ωτ, (118)

where τ ≡ φ(1 + ge)σ − φ(1 + gu)[1 − ηλw(θ)]. We can solve the two equations (117a) and (118) in
the two unknowns b` and bs to obtain

bs = −ω τ + δ`
δ` − δs

and b` = ω
τ + δs
δ` − δs

, (119)

which establishes (102). Hence, using (115) in (114), we obtain
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which, when substituted into the free-entry condition

log(λwt) = χ+

(
1− η
η

)
log (µ̃et − µ̃ut) , (120)

gives (101).

We turn now to an extension of Proposition 4 that takes into account the extra terms in (101).

Proposition 4’(Extension of Proposition 4). Under affi ne approximations to the strips Pnt, P θ
nt

and P θη

nt at the risky steady state, the response of the job-finding rate with respect to a change in st
evaluated at a risky steady-state is given by
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where an and bn are given in Lemma 2, b`, bs are given in Proposition 3’, dn, en, fn, gn are derived
below, and the standard deviation of the job-finding rate σ(λwt) satisfies

σ(λwt) =
d log(λwt)

dst
σ(st).
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Proof. Since we will take a first-order expansion around θt, it is convenient to begin by rewriting the
free-entry condition

κAt = (1− ηt)λft(µet − µut) (121)

in terms of θt rather than λft. Using λf = Bθ−η, we obtain
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)
so that we can write (121) as
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Hence, using (122), we can write (101) in terms of θt as

log(θt) =
1

η
log

[
B(1− η)

κ

]
+

1

η
log

[ ∞∑
n=0

(c`δ
n
` + csδ

n
s )
Pnt
At

+ (b`δ
n
` + bsδ

n
s )

(
elog(θt)

P θ
n+1t

Atθt
− θ1−ηeη log(θt)

P θη

n+1t

Atθ
1−ηθηt

)]
. (123)

We wish to take a first-order approximation to the log of the variables θt, Pnt/At, P θ
n+1t/Atθt, and

P θη

n+1t/(Atθ
1−ηθηt ) around the risky steady state θ. This first-order approximation for each of these

variables has the same log-linear form in the demeaned state ŝt

log(θt)=log(θ)+ψθŝt, log

(
Pnt
At

)
=an+bnŝt, log

(
P θ
nt

Atθt

)
=dn+enŝt,

and log

(
P θη

nt

Atθ
1−ηθηt

)
=fn+gnŝt. (124)

To find this solution, substitute in (123) the expressions in (124) for all of these variables to obtain

log(θ) + ψθŝt =
1

η
log

[
B(1− η)

κ

]
+

1

η
log

[ ∞∑
n=0

(c`δ
n
` + csδ

n
s )ean+bnŝt

]

+
1

η
log

[ ∞∑
n=0

(b`δ
n
` + bsδ

n
s )
(
elog(θ)+ψθ ŝtedn+enŝt − θ1−ηeη[log(θ)+ψθ ŝt]efn+gnŝt

)]
,

then take a first-order approximation of the general form f(st) = f(s) + f ′(s)(st − s) around θ at
ŝt = 0 to obtain

log(θ) + ψθŝt =
1

η
log

[
B(1− η)

κ

]
+

1

η
log

[ ∞∑
n=0

(c`δ
n
` + csδ

n
s )ean + (b`δ

n
` + bsδ

n
s ) θ

(
edn+1 − efn+1

)]

+
1

η

∞∑
n=0

(c`δ
n
` + csδ

n
s )eanbn + (b`δ

n
` + bsδ

n
s ) θ

[
edn+1(en+1 + ψθ)− efn+1(gn+1 + ηψθ)

]∑∞
n=0(c`δ

n
` + csδ

n
s )ean + (b`δ

n
` + bsδ

n
s ) θ (edn+1 − efn+1) ŝt.
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Then, matching the constant terms on both sides and the coeffi cients of ŝt on both sides gives

log θ =
1

η
log

(
B(1− η)

κ

)
+

1

η
log

[ ∞∑
n=0

(c`δ
n
` + csδ

n
s )ean + (b`δ

n
` + bsδ

n
s ) θ

(
edn+1 − efn+1

)]
(125)

and

ψθ =
1

η

∞∑
n=0

(c`δ
n
` + csδ

n
s )eanbn + (b`δ

n
` + bsδ

n
s ) θ

[
edn+1(en+1 + ψθ)− efn+1(gn+1 + ηψθ)

]∑∞
n=0(c`δ

n
` + csδ

n
s )ean + (b`δ

n
` + bsδ

n
s ) θ (edn+1 − efn+1) , (126)

which is a nonlinear system of equations in θ and ψθ because c`, cs, b`, bs, δ`, and δs depend on θ
and, as shown below, dn, en, fn, and gn all depend on ψθ. (See Lopez et al. (2017) for details in the
general case.)

The expressions for an and bn are given in Lemma 2. To derive dn and en, we use an analogous
linear approximation to P θ

nt,

log

(
P θ
nt

Atθt

)
= dn + enŝt,

where, using log(θt) = log(θ) + ψθŝt, we will show that dn and en are given by

dn = log(β) + (1− α)ga + dn−1 +
σ2
a

2

(
1− en−1 − ψθ +

en−1 + ψθ − α
S

)2

(127)

en = α(1− ρs) + en−1ρs + (ρs − 1)ψθ −
(

1− en−1 − ψθ +
en−1 + ψθ − α

S

)
en−1 + ψθ − α

S
σ2
a (128)

with d0 = e0 = 0. To derive these formulas for dn and en, note that we can write the argument of the
exponent inside the expectation in

P θ
nt

Atθt
= Et

(
eqt,t+1+∆at+1+∆ log(θt+1) P

θ
n−1t+1

At+1θt+1

)
(129)

using log(P θ
n−1,t+1/At+1θt+1) = dn−1 + en−1ŝt+1 as

qt,t+1 + ∆at+1 + ∆ log(θt+1) + dn−1 + en−1ŝt+1

= [log(β)− α∆at+1 − α∆st+1] + ∆at+1 + ψθ∆st+1 + dn−1 + en−1ŝt+1

= [log(β)− α∆at+1 − (α− ψθ) {(ρs − 1)ŝt + λa(st)σaεat+1}] + ∆at+1 + dn−1

+ en−1 [ρsŝt + λa(st)σaεat+1]

= log(β) + (1− α)(ga + σaεat+1) + [en−1ρs − (α− ψθ)(ρs − 1)] ŝt + dn−1

+ [en−1 − α + ψθ]λa(st)σaεat+1

= log(β) + (1− α)ga

+ [en−1ρs − (α− ψθ)(ρs − 1)]ŝt + dn−1 + {1− α[1 + λa(st)] + (en−1 + ψθ)λa(st)}σaεat+1. (130)
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Note that, except for the last term, all of the variables in (130) are known at t so that

log [Et (exp{log(β) + (1− α)ga + [en−1ρs − (α− ψθ)(ρs − 1)] ŝt + dn−1})]
= log(β) + (1− α)ga + [en−1ρs − (α− ψθ)(ρs − 1)]ŝt + dn−1. (131)

For the last term in (130), we use that the conditional expectation of a log-normal random variable
with mean 0 and variance σ2 is expσ2/2 so that

log(Et {exp [1− α(1 + λa(st)) + (en−1 + ψθ)λa(st)]σaεat+1})

=
σ2
a

2
[1− α(1 + λa(st)) + (en−1 + ψθ)λa(st)]

2

∼=
σ2
a

2
[1− α(1 + λa(s)) + (en−1 + ψθ)λa(s)]

2

+
{
σ2
a (en−1 + ψθ − α)λ′a(s)[1− α(1 + λa(s)) + (en−1 + ψθ)λa(s)]

}
ŝt

=

[
1− α

S
+ (en−1 + ψθ)

(
1

S
− 1

)]2
σ2
a

2
+ σ2

a

(α− en−1 − ψθ)
S

[
1− α

S
+ (en−1 + ψθ)

(
1

S
− 1

)]
ŝt

=

[
1− en−1 − ψθ −

α− en−1 − ψθ
S

]2
σ2
a

2

+ σ2
a

[
1− en−1 − ψθ −

α− en−1 − ψθ
S

](
α− en−1 − ψθ

S

)
ŝt, (132)

where in the third line we have performed a first-order approximation around st = s and in the fourth
line we have used that in a steady state,

λa(st) =
1

S
[1− 2 (st − s)]1/2 − 1

satisfies 1 + λa(s) = 1/S and λ′a(s) = −1/S. Adding (131) and (132) and grouping together the
constants and the terms in ŝt, we have that

log {Et [exp (qt,t+1 + ∆at+1 + ∆ log(θt+1) + dn−1 + en−1ŝt+1)]}

= log(β) + (1− α)ga + dn−1 +

[
1− en−1 − ψθ −

α− en−1 − ψθ
S

]2
σ2
a

2

+

{
(α− ψθ)(1− ρs) + ρsen−1 +

[
1− en−1 − ψθ −

α− en−1 − ψθ
S

](
α− en−1 − ψθ

S

)
σ2
a

}
ŝt.

(133)

Now we are ready to use the recursion in (129), namely,

dn + enŝt = log {Et [exp (qt,t+1 + ∆at+1 + ∆ log(θt+1) + dn−1 + en−1ŝt+1)]} .

Matching up the constants and the coeffi cients of ŝt on both sides of this equation using (133) gives
expressions (127) and (128) above.
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To derive fn and gn, we use a similar argument for

log

(
P θη

nt

Atθ
1−ηθηt

)
= fn + gnŝ,

where, using (1− η) log(θ) + η log(θt) = log(θ) + ηψθŝt,

fn = log(β) + (1− α)ga + fn−1 +
σ2
a

2

(
1− gn−1 − ηψθ +

gn−1 + ηψθ − α
S

)2

(134)

gn = α(1− ρs) + gn−1ρs + η(ρs − 1)ψθ −
(

1− gn−1 − ηψθ +
gn−1 + ηψθ − α

S

)
gn−1 + ηψθ − α

S
σ2
a

(135)

with f0 = g0 = 0. To derive these formulas for fn and gn, note that we can write the argument of the
exponent inside the expectation in

P θη

nt

Atθ
1−ηθηt

= Et

{
exp [qt,t+1 + ∆at+1 + η∆ log(θt+1)]

P θ
n−1t+1

At+1θ
1−ηθηt+1

}
(136)

using log(P θη

n−1,t+1/At+1θ
1−ηθηt+1) = fn−1 + gn−1ŝt+1 as

qt,t+1 + ∆at+1 + η∆ log(θt+1) + fn−1 + gn−1ŝt+1

= [log(β)− α∆at+1 − α∆st+1] + ∆at+1 + ηψθ∆st+1 + fn−1 + gn−1ŝt+1

= [log(β)− α∆at+1 − (α− ηψθ) {(ρs − 1)ŝt + λa(st)σaεat+1}] + ∆at+1 + fn−1

+ gn−1 [ρsŝt + λa(st)σaεat+1]

= log(β) + (1− α)(ga + σaεat+1) + [gn−1ρs − (α− ηψθ)(ρs − 1)] ŝt + fn−1

+ [gn−1 − α + ηψθ]λa(st)σaεat+1

= log(β) + (1− α)ga + [gn−1ρs − (α− ηψθ)(ρs − 1)] ŝt + fn−1

+ {1− α[1 + λa(st)] + (gn−1 + ηψθ)λa(st)}σaεat+1. (137)

Note that, except for the last term, all of the variables in (137) are known at t so that

log [Et (exp {log(β) + (1− α)ga + [gn−1ρs − (α− ηψθ)(ρs − 1)] ŝt + fn−1})]
= log(β) + (1− α)ga + [gn−1ρs − (α− ηψθ)(ρs − 1)] ŝt + fn−1. (138)

For the last term in (137), we use that the conditional expectation of a log-normal random variable
with mean 0 and variance σ2 is expσ2/2 so that

log [Et (exp{1− α[1 + λa(st)] + (gn−1 + ηψθ)λa(st)}σaεat+1)]

=
σ2
a

2
{1− α[1 + λa(st)] + (gn−1 + ηψθ)λa(st)}

2 .
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Now this expression approximately equals

σ2
a

2
{1− α[1 + λa(s)] + (gn−1 + ηψθ)λa(s)}

2

+
{
σ2
a (gn−1 + ηψθ − α)λ′a(s)[1− α(1 + λa(s)) + (gn−1 + ηψθ)λa(s)]

}
ŝt

=
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S
+ (gn−1 + ηψθ)

(
1

S
− 1

)]2
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a

2
+ σ2

a

(α− gn−1 − ηψθ)
S

[
1− α

S
+ (gn−1 + ηψθ)

(
1

S
− 1

)]
ŝt

=

(
1− gn−1 − ηψθ −

α− gn−1 − ηψθ
S

)2
σ2
a

2

+ σ2
a

(
1− gn−1 − ηψθ −

α− gn−1 − ηψθ
S

)(
α− gn−1 − ηψθ

S

)
ŝt, (139)

where in the third line we have performed a first-order approximation around st = s and in the fourth
line we have used the steady-state relation (83). Adding (138) and (139) and grouping together the
constants and the terms in ŝt, we obtain

log {Et [exp (qt,t+1 + ∆at+1 + η∆ log(θt+1) + fn−1 + gn−1ŝt+1)]}

= log(β) + (1− α)ga + fn−1 +

(
1− gn−1 − ηψθ −

α− gn−1 − ηψθ
S

)2
σ2
a

2

+

 (α− ηψθ)(1− ρs) + ρsgn−1 +
(

1− gn−1 − ηψθ −
α−gn−1−ηψθ

S

)(
α−gn−1−ηψθ

S

)
σ2
a

 ŝt. (140)

Now we are ready to use the recursion in (136), namely,

fn + gnŝt = log {Et [exp (qt,t+1 + ∆at+1 + η∆ log(θt+1) + fn−1 + gn−1ŝt+1)]} .

Matching up the constants and the coeffi cients of ŝt on both sides of this equation using (140) gives
expressions (134) and (135) above.

We can now compare the accuracy of the linear approximation around the risky steady state in
Proposition 4’with the linear approximation based on the assumption λwt+j = λw behind Proposition
4. As Table A.7 shows, the approximation in Proposition 4 that uses the assumption λwt+j = λw
generates an approximate process for λwt that is 1.93 times as volatile as the process derived from
the global solution of the model, and that correlates with it with a coeffi cient of 0.998. In contrast,
the approximation in Proposition 4’that does not impose the assumption λwt+j = λw generates an
approximate process for λwt that has nearly exactly the same volatility (0.999 as volatile) as the
process derived from the global solution of the model, and that correlates with it with a coeffi cient of
0.985. The more complicated expression behind Proposition 4’offers a more accurate solution as well
as an alternative suffi cient statistic, but in the interest of providing insight into our new mechanism,
we used in the paper the simpler expression behind Proposition 4.

B Nominal and Real Bonds in the Model

Here we provide some details about the pricing of nominal and real bonds.
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B.1 Pricing Real Zero-Coupon Bonds

The price at time t of the n-period zero-coupon real bond P r
nt is defined as the expected value of

one unit of goods in n periods. Hence it is given by P r
nt = Et(Qt,t+n). We can write this formula

recursively as P r
nt = Et(Qt,t+1P

r
n−1,t+1) with P r

0t = 1.

B.2 Pricing Nominal Zero-Coupon Bonds

Here we show how we price nominal bonds in our model, the inflation process we posit, and then
briefly discuss why bonds carry an inflation-risk premium. Note that the price at time t of an n-period
zero-coupon nominal bond is defined as the expected value of a claim to one dollar in n periods in
period-t goods, P b

nt = Et(Qt,t+n/Πt,t+n), where Πt,t+n is the gross inflation rate between t and t + n.
We can write this formula recursively as

P b
nt = Et

(
Qt,t+1

Πt,t+1

P b
n−1,t+1

)
with P b

0t = 1. (141)

We follow Wachter (2006) and posit an exogenous monthly process for inflation of the form

πt+1 = π̄ + xt + wt+1 and xt+1 = φxt + ψwt+1, (142)

which we estimate below. Note for later that we allow the nominal shock wt to be correlated with
the aggregate productivity shock εat. Observe also that the gross inflation rate between t and t + 1,
Πt,t+1, and the net inflation rate between t and t+ 1, πt+1, are related by

Πt,t+1 = exp(πt+1). (143)

We first discuss how we solve for the price of a n-period nominal bond. Recall that the state of our
baseline (real) model is (st, Zet, Zut), which we refer to as the real state. The nominal model augments
the equations of the baseline model with the exogenous inflation process (142). The nominal model
thus adds the nominal state xt so that the state of the nominal model is (st, Zet, Zut, xt). We focus on
a stationary equilibrium in which the price of the n-period nominal bond is a stationary function of
this state and so has the form P b

nt = P b
n(st, Zet, Zut, xt). To solve for such an equilibrium, we posit a

solution in which the log of this price is the sum of a nominal part that is affi ne in the nominal state
xt and a real part that depends on the real state (st, Zet, Zut), that is,

log(P b
n(st, Zet, Zut, xt)) = an + bnxt + log(F b

n(st, Zet, Zut))

or
P b
n(st, Zet, Zut, xt) = exp(an + bnxt)F

b
n(st, Zet, Zut). (144)

Now, starting with (141), namely,

P b
nt = Et(Qt,t+1Π−1

t,t+1P
b
n−1,t+1), (145)

we substitute on the left side of (145) using (144), where we let F b
n,t denote F

b
n(st, Zet, Zut), and on
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the right side using Πt,t+1 = exp(πt+1) to obtain

exp(an + bnxt)F
b
nt = Et

[
Qt,t+1 exp(−πt+1)P b

n−1,t+1

]
= Et

[
Qt,t+1 exp(−πt+1) exp(an−1 + bn−1xt+1)F b

n−1,t+1

]
= Et

[
Qt,t+1 exp(−π̄ − xt − wt+1 + an−1 + bn−1(φxt + ψwt+1))F b

n−1,t+1

]
= exp(−π̄ + an−1 − (1− φbn−1)xt)Et

[
Qt,t+1 exp((bn−1ψ − 1)wt+1)F b

n−1,t+1

]
, (146)

where in the second line we used a version (144) for a n−1-period bond in period t+1 and let F b
n−1,t+1

denote F b
n−1(st+1, Zet+1, Zut+1), in the third line we substituted for πt+1 using the first equation in

(142) and for xt+1 using the second equation in (142), and collected terms, and in the fourth line we
rearranged terms. Hence, matching the constant terms and the terms in xt on both sides of the last
line gives

an = −π̄ + an−1 and bn = − (1− φbn−1) (147)

with a0 = b0 = 0. Thus, solving (147) recursively gives

an = −nπ̄ and bn = −1− φn

1− φ .

Now using from (147) that

exp(an + bnxt) = exp(−π̄ + an−1 + (φbn−1 − 1)xt), (148)

we can divide both sides of the fourth line of (146) by (148) to obtain

F b
nt = Et

[
Qt,t+1 exp((bn−1ψ − 1)wt+1)F b

n−1,t+1

]
with F b

0t = P b
0te
−a0−b0xt = 1, (149)

where the expression for F b
0t uses (144). We then solve (149) nonlinearly.

Finally, notice that if the nominal shock wt+1 were uncorrelated with the real shock εat+1, then
we could write the product in the fourth line in (146) as

Et
[
Qt,t+1 exp((bn−1ψ − 1)wt+1)F b

n−1,t+1

]
= Et [exp((bn−1ψ − 1)wt+1)]Et

(
Qt,t+1F

b
n−1,t+1

)
,

in which case the real interest rate would reduce to the nominal interest rate minus the (log of the)
expected inflation rate. Here instead we have

Et
[
Qt,t+1 exp((bn−1ψ − 1)wt+1)F b

n−1,t+1

]
= Covt(exp((bn−1ψ − 1)wt+1, Qt,t+1F

b
n−1,t+1)

+ Et [exp((bn−1ψ − 1)wt+1)]Et
[
Qt,t+1F

b
n−1,t+1

]
.

Given our estimates, wt+1 and εat+1 are negatively correlated, so that a nominal bond tends to pay off
fewer goods when the marginal utility of these goods tends to be high. Hence, nominal bonds carry
an inflation-risk premium.
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B.2.1 Estimation of Exogenous Inflation Process

The key way the process for inflation is connected to the real economy is that shocks to inflation
are correlated with shocks to productivity. We start by estimating an ARMA monthly process for
inflation. Since measures of aggregate productivity are only available quarterly whereas our model is
monthly, we proceed as follows. We append a monthly process for inflation to our real model of the
same form as the quarterly process in Wachter (2006), namely,

πt+1 = π̄ + xt + wt+1 and xt+1 = φxt + ψwt+1,

where wt is an i.i.d. random variable that is distributed N(0, σ2
w) and correlated with productivity

innovations with corr(εat, wt) = ρπa. This state-space representation implies an ARMA(1,1) univariate
representation for monthly inflation. We estimate the model by maximum likelihood and recover the
parameters (π̄, φ, ψ, σw).

We now define quarterly inflation and productivity growth as

πq,t+1 ≡ πt+1 + πt+2 + πt+3 and ∆aq,t+1 ≡ ∆at+1 + ∆at+2 + ∆at+3.

These quarterly rates can be written in terms of the monthly parameters and processes as

πt+3 + πt+2 + πt+1 = 3π̄ + (1 + φ+ φ2)xt + wt+3 + (1 + ψ)wt+2 + [1 + ψ(1 + φ)]wt+1

and
∆at+3 + ∆at+2 + ∆at+1 = 3ga + εat+3 + εat+2 + εat+1.

Thus, after estimating the monthly inflation process we can construct

wq,t+1 ≡ wt+3 + (1 + ψ)wt+2 + [1 + ψ(1 + φ)]wt+1,

and hence we can compute

Cov(wq,t+1,∆aq,t+1) = Cov(wt+3 + (1 + ψ)wt+2 + [1 + ψ(1 + φ)]wt+1, εat+3 + εat+2 + εat+1)

= (1 + (1 + ψ) + [1 + ψ(1 + φ)]) ρπaσwσa.

Rearranging terms, we can recover the monthly correlation between inflation and productivity inno-
vations as

ρπa =
Cov(wq,t+1,∆aq,t+1)

(1 + (1 + ψ) + [1 + ψ(1 + φ)])σwσa
.

In Table A.8, we display the results of this estimation.

C Results for Alternative Preferences

Here we inspect the amplification mechanism emanating from the alternative preferences we consider
and emphasize that they formally all work in a nearly identical way.
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C.1 The Mechanism for Alternative Preferences

Note first that Proposition 3 in the paper holds as stated for our models with Campbell-Cochrane
preferences with external habit, Epstein-Zin preferences with long-run risk, Epstein-Zin preferences
with variable disaster risk, and the affi ne discount factor. The reason is simply that this result depends
only on the search side of the model and not on the discount factor that a particular preference and
shock structure implies. It turns out that an analogue of Lemma 2 holds for each of these preferences
as well. For Campbell-Cochrane preferences with external habit, the log-linear approximation in
(73) holds with the same constants given in Lemma 2 except that the constant S in bn is replaced
by S̄. Proposition 4 then applies as stated. For Epstein-Zin preferences with long-run risk, the
analogue of Lemma 2 holds with log (Pnt/At) = an + bn∆st + cnxt, where bn = ρs(1 − ρns )/(1 − ρs),
cn = (1 − ρ)(1 − ρnx)/(1 − ρx), and the constants an are given next. For the remaining preferences,
the prices of claims to strips have the same form as (73) with constants provided here next. Then,
Proposition 4 applies as stated.

In order to provide some intuition as to how these elasticities and the associated weights vary
across models, in Figure A.2, we graph these elasticities, scaled by the volatility of the relevant state,
and the corresponding weights. Notice that in all these models, these scaled elasticities increase with
the horizon n. Hence, the intuition for the role of human capital is the same for all these models:
the greater the degree of human capital accumulation, the larger the weights placed on long-horizon
claims, which are relatively more sensitive to changes in the exogenous state of an economy, and so
the larger the volatility of the job-finding rate. Therefore, as far as the volatility of the job-finding
rate is concerned, all of these models work in the same way.

C.2 Versions of Lemma 2 and Proposition 4 for Alternative Preferences

We now state and prove a version of Lemma 2 and Proposition 4 for each of the alternative preferences
we examine.

C.2.1 Campbell-Cochrane Preferences with External Habit

Under our approximations, Lemma 2 and Proposition 4 apply as stated for the external habit case.

C.2.2 Epstein-Zin Preferences with Long-Run Risk

We begin by deriving the risk-adjusted log-linear approximation to strips around the risky steady
state.

Lemma 2b (Price of Productivity Claims for EZ Preferences with Long-Run Risk). The
price of a claim to productivity in n periods approximately satisfies

log

(
Pnt
At

)
= an + bnxt + cn∆st,
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with

an = an−1 + log(β) + (1− α)ga − (α− ρ) (w − d) +
(1− α)2

2
σ2
a

+ (cn−1 − (α− ρ)ψwx)
2 φ

2
xσ

2
a

2
+

(
bn−1 +

1− α
1− ρ − (α− ρ)ψws

)2
φ2
sσ

2
a

2
,

w − d = −ga −
1− α

2
σ2
a −

1− α
2

ψ2
wxφ

2
xσ

2
a −

1− α
2

(
ψws −

1

1− ρ

)2

φ2
sσ

2
a,

and

ψwx =
δ

1− β + δ(1− ρx)
and ψws =

δ

1− β + δ(1− ρs)
ρs

1− ρ,

where a0 = b0 = c0 = 0,

bn =
1− ρns
1− ρs

ρs, and cn =
1− ρnx
1− ρx

(1− ρ).

Now, given this result, it is immediate that if we take a first-order approximation to the key equation
from Proposition 3,

log(λwt) = χ+

(
1− η
η

)
log

[ ∞∑
n=0

(c`δ
n
` + csδ

n
s )
Pnt
At

]
,

using the approximate solution for productivity strips in Lemma 2b, the following proposition is
immediate.

Proposition 4b (Suffi cient Statistic for Job-Finding Rate Volatility for EZ Preferences
with Long-Run Risk). Under the approximation in Lemma 2b, the responses of the job-finding rate
to a change in xt and ∆st evaluated at a risky steady state are given by

d log(λwt)

dxt
=

(
1− η
η

) ∞∑
n=0

ωnbn and
d log(λwt)

d∆st
=

(
1− η
η

) ∞∑
n=0

ωncn with ωn =
ean(c`δ

n
` + csδ

n
s )∑∞

n=0 e
an(c`δ

n
` + csδ

n
s )
,

(150)
where an,bn and cn are given in Lemma 2b and the variance of the job-finding rate σ(λwt) satisfies

σ(λwt)
2 =

(
d log(λwt)

dxt

)2

σ(xt)
2 +

(
d log(λwt)

d∆st

)2

σ(∆st)
2. (151)

We first prove Lemma 2b. To this purpose, note that the shocks

∆at+1 = ga + xt + σaεat+1, xt+1 = ρxxt + φxσaεxt+1, and ∆st+1 = ρs∆st + φsσaεst+1 (152)

imply that
Et∆at+1 = ga + xt, Etxt+1 = ρxxt, and Et∆st+1 = ρs∆st. (153)

Rewrite the preferences

Vt =
[
(1− β)StC

1−ρ
t + β

(
EtV 1−α

t+1

) 1−ρ
1−α
] 1
1−ρ

(154)
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as

W 1−ρ
t ≡

(
Vt

S
1

1−ρ
t Ct

)1−ρ

= (1− β) +
β

StC
1−ρ
t

(
EtV 1−α

t+1

) 1−ρ
1−α , (155)

which is equivalent to

e(1−ρ)wt = (1− β) +
β

StC
1−ρ
t

(
EtV 1−α

t+1

) 1−ρ
1−α , (156)

with Wt ≡ Vt/
(
S

1/(1−ρ)
t Ct

)
and wt = log(Wt) so e(1−ρ)wt = [Vt/(S

1/(1−ρ)
t Ct)]

1−ρ. Using Vt+1 =

Wt+1S
1/(1−ρ)
t+1 Ct+1 in (156) gives

e(1−ρ)wt = (1− β) +
β

StC
1−ρ
t

{
Et
[
Wt+1S

1/(1−ρ)
t+1 Ct+1

]1−α
} 1−ρ

1−α

= (1− β) + β

{
Et
[
Wt+1(St+1/St)

1
1−ρ (Ct+1/Ct)

]1−α
} 1−ρ

1−α

= 1− β + β
[
Ete(1−α)(wt+1+ 1

1−ρ∆st+1+∆ct+1)
] 1−ρ
1−α

= 1− β + β
(
edt
)1−ρ

, (157)

where st = log(St), ct = log(Ct), and

dt ≡
1

1− α log
{
Et
[
e(1−α)(wt+1+ 1

1−ρ∆st+1+∆ct+1)
]}

. (158)

Then, taking logs of both sides of (157) and dividing by 1− ρ gives

wt =
1

1− ρ log
(
1− β + βe(1−ρ)dt

)
≈ 1

1− ρ log (1− β + δ) +
δ

1− β + δ
(dt − d) , (159)

where we to obtain the right side we used a first-order approximation around dt = d with δ ≡ βe(1−ρ)d.
We will use affi ne guesses in the states for the unknown variables, which make wt+1 conditionally
normal distributed, and will use the approximation that ∆ct+1 = ∆at+1, which makes ∆ct+1 normally
distributed as well. Using the properties of normal distribution, we can rewrite (158) as

dt = Etwt+1 +
Et∆st+1

1− ρ + Et∆at+1 +
1− α

2
Vart

(
wt+1 +

1

1− ρ∆st+1 + ∆at+1

)
, (160)

Then, under the affi ne guesses

wt = w + ψwxxt + ψws∆st and dt = d+ ψdxxt + ψds∆st, (161)

we can substitute for wt and dt in (159) to obtain

w + ψwxxt + ψws∆st =
1

1− ρ log (1− β + δ) +
δ

1− β + δ
(ψdxxt + ψds∆st). (162)
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Matching coeffi cients on both sides of (162) gives

w =
1

1− ρ log (1− β + δ) ,

ψwx =
δ

1− β + δ
ψdx, (163)

and

ψws =
δ

1− β + δ
ψds. (164)

Now substitute for dt on the left side of (160) using (161) and substitute for wt+1 on the right side
using the affi ne guess for wt+1 to obtain

d+ ψdxxt + ψds∆st = w + ψwxEtxt+1 + ψwsEt∆st+1 +
1

1− ρEt∆st+1 + Et∆at+1

+
1− α

2
Vart

(
w + ψwxxt+1 + ψws∆st+1 +

1

1− ρ∆st+1 + ∆at+1

)
.

Using the processes for the shocks ∆at+1 = ga + xt + σaεat+1, xt+1 = ρxxt + φxσaεxt+1, and ∆st+1 =

ρs∆st + φsσaεst+1, we further obtain

d+ ψdxxt + ψds∆st = w + ψwxρxxt + ψwsρs∆st +
1

1− ρρs∆st + ga + xt

+
1− α

2
Vart

(
w + ψwxφxσaεxt+1 + ψwsφsσaεst+1 +

1

1− ρφsσaεst+1 + ga + xt + σaεat+1

)
(165)

or, by the independence of the three shocks,

Vart

(
w + ψwxφxσaεxt+1 + ψwsφsσaεst+1 +

1

1− ρφsσaεst+1 + ga + xt + σaεat+1

)
= Vart (ψwxφxσaεxt+1) +Vart

[(
ψws +

1

1− ρs

)
φsσaεst+1

]
+Vart (σaεat+1) .

Hence, (165) can be rewritten as

d+ ψdxxt + ψds∆st = w + ψwxρxxt + ψwsρs∆st +
1

1− ρρs∆st + ga + xt

+
1− α

2
σ2
a +

1− α
2

ψ2
wxφ

2
xσ

2
a +

1− α
2

(
ψws +

1

1− ρ

)2

φ2
sσ

2
a. (166)

By using the affi ne guess for dt in this equation and matching coeffi cients, we obtain

d = w + ga +
1− α

2
σ2
a +

1− α
2

ψ2
wxφ

2
xσ

2
a +

1− α
2

(
ψws +

1

1− ρ

)2

φ2
sσ

2
a,

ψdx = ψwxρx + 1, and ψds = ψwsρs + ρs/(1− ρ). Observe for later use that these equations imply

ψwxρx − ψdx = −1 and ψwsρs − ψd = − ρs
1− ρ. (167)
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Using (163) and (164), we see that

ψdx =

[
δ

1− β + δ
ψdx

]
ρx + 1 and ψds =

[
δ

1− β + δ
ψds

]
ρs + ρs/(1− ρ)

so that

ψdx =
1− β + δ

1− β + δ(1− ρx)
and ψds =

(
ρs

1− ρ

)
1− β + δ

1− β + δ(1− ρs)
.

and thus using (167)

ψwx =
δ

1− β + δ(1− ρx)
and ψws =

(
ρs

1− ρ

)
δ

1− β + δ(1− ρs)
.

We now turn to the formulas for the strips. Using the approximation log(Pnt/At) = an + bn∆st +

cnxt in the extension of our main pricing equation (72),

log

(
Pnt
At

)
= log (Et {exp [qt,t+1 + ∆at+1 + log(Pn−1,t+1/At+1)]}) , (168)

gives (168) so that

an + bn∆st + cnxt = log {Et [exp(qt,t+1 + ∆at+1 + an−1 + bn−1∆st+1 + cn−1xt+1)]} . (169)

The stochastic discount factor for Epstein-Zin preferences is

Qt,t+1 =
∂Vt/∂Ct+1

∂Vt/∂Ct
and

∂Vt
∂Ct+1

=
∂Vt+1

∂Ct+1

∂Vt
∂Vt+1

so Qt,t+1 =
∂Vt+1/∂Ct+1∂Vt/∂Vt+1

∂Vt/∂Ct
.

Note from (154) that

∂Vt
∂Ct

= (1− β)V ρ
t C
−ρ
t St and

∂Vt
∂Vt+1

= βV ρ
t V
−α
t+1

(
EtV 1−α

t+1

)α−ρ
1−α ,

so that the stochastic discount factor can be expressed as

Qt,t+1 =

[
V ρ
t+1C

−ρ
t+1St+1

] [
βV ρ

t V
−α
t+1

(
EtV 1−α

t+1

)α−ρ
1−α
]

V ρ
t C
−ρ
t St

=β

(
Ct+1

Ct

)−ρ
St+1

St

 Vt+1(
EtV 1−α

t+1

) 1
1−α

−(α−ρ)

. (170)

By the definition of the variables wt and d, and substituting ∆ct+1 = ∆at+1, we have

qt,t+1 = log(β) + ∆st+1 − ρ∆at+1 − (α− ρ)

(
vt+1 −

1

1− α log{Et
[
e(1−α)vt+1

]
}
)
, (171)
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where the term in brackets on the right side can be expanded as

vt+1 −
1

1− α log{Et[e(1−α)vt+1 ]} (172)

= wt+1 +
1

1− ρst+1 + at+1 −
1

1− α log

(
Et
{

exp

[
(1− α)(wt+1 +

1

1− ρst+1 + at+1)

]})
= wt+1 +

1

1− ρ∆st+1 + ∆at+1 −
1

1− α log

(
Et
{

exp

[
(1− α)(wt+1 +

1

1− ρ∆st+1 + ∆at+1)

]})
= wt+1 +

1

1− ρ∆st+1 + ∆at+1 − dt, (173)

where we used Vt+1 = Wt+1S
1/(1−ρ)
t+1 At+1, subtracted and summed st/(1−ρ)+at, and used the definition

of dt. Substituting (173) into (171) gives

qt,t+1 = log(β) + ∆st+1 − ρ∆at+1 − (α− ρ)

[
wt+1 +

1

1− ρ∆st+1 + ∆at+1 − dt
]

= log(β)− α∆at+1 +
1− α
1− ρ∆st+1 − (α− ρ)(wt+1 − dt). (174)

Now we turn to developing recursive formulas for an, bn, and cn starting from (169), namely,

an + bn∆st + cnxt = log {Et [exp(qt,t+1 + ∆at+1 + an−1 + bn−1∆st+1 + cn−1xt+1)]} . (175)

Consider the argument of the exponential function on the right side of this equation, namely, qt,t+1 +

∆at+1 + an−1 + bn−1∆st+1 + cn−1xt+1, and substitute for qt,t+1 using (174) to obtain

log(β)− α∆at+1 +
1− α
1− ρ∆st+1 − (α− ρ)(wt+1 − dt) + ∆at+1 + an−1 + bn−1∆st+1 + cn−1xt+1

= log(β) + (1− α) (ga + xt + σaεa,t+1) +

(
bn−1 +

1− α
1− ρ

)
(ρs∆st + φsσaεst+1)

−(α− ρ)(Etwt+1 + ψwxφxσaεxt+1 + ψwsφsσaεst+1 − dt)
+an−1 + cn−1(ρxxt + φxσaεxt+1)

= log(β) + (1− α)(ga + xt) + an−1 +

(
bn−1 +

1− α
1− ρ

)
ρ∆st (176)

+cn−1ρxxt − (α− ρ)(Etwt+1 − dt) (177)

+(1− α)(σaεa,t+1) +

[
bn−1 +

1− α
1− ρ − (α− ρ)ψws)

]
φsσaεst+1 (178)

+ [cn−1 − (α− ρ)ψwx]φxσaεxt+1 (179)

where in the second line we used the affi ne guesses

wt = w + ψwxxt + ψws∆st, and dt = d+ ψdxxt + ψds∆st,
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that xt+1 = ρxxt + φxσaεxt+1, ∆at+1 = ga + xt + σaεa,t+1, ∆st+1 = ρs∆st + φsσaεst+1, and

wt+1 = [w + ψwxρxxt + ψwsρs∆st] + ψwxφxσaεxt+1 + ψwsφsσaεst+1

= Etwt+1 + ψwxφxσaεxt+1 + ψwsφsσaεst+1.

Since the terms in (176) and (177) are all known at t, the stochastic terms in (178) and (179) are
such that

log

(
Et{exp(1− α)(σaεa,t+1) +

[
bn−1 +

1− α
1− ρ − (α− ρ)ψws)

]
φsσaεst+1

+ [cn−1 − (α− ρ)ψwx]φxσaεxt+1}) =
(1− α)2

2
σ2
a + [cn−1 − (α− ρ)ψwx]

2 φ
2
xσ

2
a

2

+

[
bn−1 +

1− α
1− ρ − (α− ρ)ψws

]2
φ2
sσ

2
a

2
.

Therefore, substituting into (175) gives

an + bn∆st + cnxt (180)

= log(β) + (1− α)(ga + xt) + an−1 +

(
bn−1 +

1− α
1− ρ

)
ρ∆st (181)

+ cn−1ρxxt − (α− ρ)Et(wt+1 − dt)

+
(1− α)2

2
σ2
a + [cn−1 − (α− ρ)ψwx]

2 φ
2
xσ

2
a

2
+

[
bn−1 +

1− α
1− ρ − (α− ρ)ψws

]2
φ2
sσ

2
a

2
.

Now, substitute into (181), to obtain Et(wt+1) = w+ψwxρxxt+ψwsρs∆st and dt = d+ψdxxt+ψds∆st.
Matching the constant terms, the coeffi cients of the terms in ∆st, and the coeffi cients of the terms in
xt on both sides of (180) and (181) yields

an = an−1 + log(β) + (1− α)ga − (α− ρ) (w − d)

+
(1− α)2

2
σ2
a + [cn−1 − (α− ρ)ψwx]

2 φ
2
xσ

2
a

2
+

[
bn−1 +

1− α
1− ρ − (α− ρ)ψws

]2
φ2
sσ

2
a

2
,

bn = bn−1ρs +
1− α
1− ρ ρs − (α− ρ)(ψwsρs − ψd), (182)

and
cn = cn−1ρx + 1− α− (α− ρ)(ψwxρx − ψdx). (183)

Now using ψwsρs − ψd = −ρs/(1− ρs) derived in (167) in (182), we obtain

bn = bn−1ρs +
1− α
1− ρ ρs +

ρs(α− ρ)

1− ρ = bn−1ρs + ρs

so bn = (1− ρns )ρs/(1− ρs) and using ψwxρx − ψdx = −1 derived in (167) in (183), we further obtain

cn = cn−1ρx + 1− α + (α− ρ) = cn−1ρx + 1− ρ
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so cn = (1− ρnx)(1− ρ)/(1− ρx). This concludes the proof.

C.2.3 Epstein-Zin Preferences with Variable Disaster Risk

We begin with the risk-adjusted log-linear approximation to strips around the risky steady state.

Lemma 2c (Price of Productivity Claims for EZ Preferences with Variable Disaster Risk).
The price of a claim to productivity in n periods approximately satisfies

log

(
Pnt
At

)
= an + bn(st − s),

with

an = an−1 + log(β) + (1− α)ga − (α− ρ) (w − d) +
(1− α)2

2
σ2

+
[(ρ− α)ψws + bn−1]2 φ2

ss

2
σ2 +

[
e(α−1)θ − 1

]
s,

w − d = −ga −
1− α

2
(1 + ψ2

wsφ
2
ss)σ

2 − e(α−1)θ − 1

1− α s,

and ψws is the negative root of the quadratic equation

ψws =
δ

1− β + δ(1− ρs)

[
e(α−1)θ − 1

1− α +
(1− α)

2
ψ2
wsφ

2
sσ

2

]
,

where a0 = b0 = 0 and

bn = bn−1ρs − (1− ρ)

[
e(α−1)θ − 1

α− 1

]
+

(α− ρ)(1− α)

2
ψ2
wsφ

2
sσ

2 +
[(ρ− γ)ψws + bn−1]2 φ2

s

2
σ2.

By taking a first-order approximation to the key equation in Proposition 3,

log(λwt) = χ+

(
1− η
η

)
log

[ ∞∑
n=0

(c`δ
n
` + csδ

n
s )
Pnt
At

]
,

and using the approximate solution for productivity strips in Lemma 2c, the following proposition is
immediate.

Proposition 4c (Suffi cient Statistic for Job-Finding Rate Volatility for EZ Preferences
with Variable Disaster Risk). Under the approximation in Lemma 2c, the response of the job-
finding rate to a change in st evaluated at a risky steady state is given by

d log(λwt)

dst
=

(
1− η
η

) ∞∑
n=0

ωnbn with ωn =
ean(c`δ

n
` + csδ

n
s )∑∞

n=0 e
an(c`δ

n
` + csδ

n
s )
, (184)

where an and bn are given in Lemma 2c and the standard deviation of the job-finding rate σ(λwt)
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satisfies

σ(λwt) =
d log(λwt)

dst
σ(st). (185)

We now turn to the proof of Lemma 2c. The proof is as follows. In this case, the forcing process
are

∆at+1 = ga + σaεat+1 − θjt+1 and st+1 = (1− ρs)s+ ρsst + φsσs
√
stεst+1

with jt+1 ∼ Poisson(st), and (εa,t, εs,t) ∼ N(0, I2) i.i.d. and independent of jt+1. Note that Etjt+1 =

st. Recall that the conditional (log) moment generating function of a standard normal random
variable εt+1 is log [Et(eαεt+1)] = α2/2 and that of a Poisson random variable jt+1 is log [Et (eαjt+1)] =

(eα − 1)st. It follows from the independence of (εa,t+1, εs,t+1, jt+1) that their joint conditional (log)
moment generating function is

log {Et [exp(αaεa,t+1 + αs
√
stεs,t+1 + αjjt+1)]} =

α2
a

2
+

(
α2
s

2
+ eαj − 1

)
st. (186)

Like in the previous Epstein-Zin case, rewrite Vt =
[
(1− β)C1−ρ

t + β
(
EtV 1−α

t+1

) 1−ρ
1−α
] 1
1−ρ

as

(
Vt
Ct

)1−ρ

= 1− β +
β

C1−ρ
t

(
EtV 1−α

t+1

) 1−ρ
1−α ,

which can be equivalently expressed as

e(1−ρ)wt = 1− β +
β

C1−ρ
t

(
EtV 1−α

t+1

) 1−ρ
1−α ,

where Wt ≡ Vt/Ct and wt = log(Wt) so e(1−ρ)wt = (Vt/Ct)
1−ρ. Using that Vt+1 = Wt+1Ct+1 gives

e(1−ρ)wt = (1− β) +
β

C1−ρ
t

(
Et [Wt+1Ct+1]1−α

) 1−ρ
1−α = (1− β) + β

(
Et [Wt+1(Ct+1/Ct)]

1−α) 1−ρ1−α

= 1− β + β
(
Ete(1−α)(wt+1+∆ct+1)

) 1−ρ
1−α = 1− β + β

(
edt
)1−ρ

,

where ct = log(Ct) and

dt ≡
1

1− α log
(
Ete(1−α)(wt+1+∆ct+1)

)
.

Using the definitions of the variables w and d, the stochastic discount factor is qt,t+1 = log(β) −
α∆ct+1 − (α− ρ)(wt+1 − dt) with

wt =
1

1− ρ log
(
1− β + βe(1−ρ)dt

)
≈ 1

1− ρ log
(
1− β + βe(1−ρ)d

)
+

δ

1− β + δ
d̂t, (187)

dt =
1

1− α log
(
Ete(1−α)(wt+1+∆ct+1)

)
, (188)

and δ ≡ βe(1−ρ)d. By the usual notation, the log price of the n-th productivity strip is

an + bnŝt = log
[
Et
(
eqt,t+1+∆at+1+an−1+bn−1ŝt+1

)]
. (189)
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Under the simplifying assumption that ∆ct+1 ≈ ∆at+1 and using the affi ne guesses wt = w + ψwsŝt
and dt = d+ ψdsŝt, we can approximate the solution to equations (187), (188), and (189) as

w + ψwsŝt =
1

1− ρ log (1− β + δ) +
δ

1− β + δ
ψdsŝt,

d+ ψdsŝt = Etwt+1 + ga +
1

1− α log
{
Et
[
e(1−α)(ψwsσs

√
stεst+1+σaεa,t+1)−θjt+1

]}
= w + ψwsρsŝt + ga +

1− α
2

(σ2
a + ψ2

wsσ
2
sst) +

e(α−1)θ − 1

1− α (s+ ŝt),

and

an + bnŝt = log(β)− (α− ρ)(Etwt+1 − dt) + (1− α)ga + an−1 + bn−1Etŝt+1

+ log (Et {exp [(bn−1 − (α− ρ)ψws)σs
√
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where we used the log of the moment generating function in (186) to characterize the expectations.
Hence, by matching coeffi cients, we obtain
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This concludes the proof.

C.2.4 Affi ne Stochastic Discount Factor

We begin with the risk-adjusted log-linear approximation to strips around the risky steady state.

Lemma 2d (Price of Productivity Claims for the Affi ne Stochastic Discount Factor). The
price of a claim to productivity in n periods approximately satisfies

log

(
Pnt
At

)
= an + bnst,

with a0 = b0 = 0,

an = an−1 + ga − µ0 + (1 + bn−1)2σ
2
a

2
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a,
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2
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2
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n
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2
a)

]
.

Next, by taking a first-order approximation to the equation in Proposition 3,
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(
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η

)
log
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s )
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]
,

and using the approximate solution for productivity strips in Lemma 2d, the following proposition is
immediate.

Proposition 4d (Suffi cient Statistic for Job-Finding Rate Volatility for the Affi ne Sto-
chastic Discount Factor). Under the approximation in Lemma 2d, the response of the job-finding
rate to a change in st evaluated at a risky steady state is given by

d log(λwt)

dst
=

(
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) ∞∑
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ean(c`δ

n
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s )
, (190)

where an and bn are given in Lemma 2d and the standard deviation of the job-finding rate σ(λwt)

satisfies

σ(λwt) =
d log(λwt)

dst
σ(st). (191)

We now turn to the proof of Lemma 2d. The proof is as follows. The affi ne model implies that
the price in period t of a claim to productivity growth At+n/At in n periods is

Et
(
Qt,t+n

At+n
At

)
= ean+bnst . (192)
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By the pricing equation (72), we have

an + bnst = log
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eqt,t+n+∆at+1+an−1+bn−1ŝt+1
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where in the first line we used that qt,t+n = log(Qt,t+1) and in the second line we used that

qt,t+n = −(µ0 − µ1st)−
1

2
(γ0 − γ1st)

2σ2
a − (γ0 − γ1st)σaεat+1.

By matching the constants on both sides of (193), we obtain
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and by matching the coeffi cients on st on both sides of (193), we obtain
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This completes the proof of the claim.

D Analogues of Proposition 2 for Epstein-Zin Preferences

Here we show that our model with Epstein-Zin preferences with variable disaster risk and ρ = 1

implies no fluctuations in unemployment. We also show that absent preference shocks, our model with
Epstein-Zin preferences with long-run risk and ρ = 1 also leads to no fluctuations in unemployment.

Epstein-Zin Preferences with Variable Disaster Risk. Consider our model with Epstein-Zin
preferences

Vt =
[
(1− β)C1−ρ

t + β
(
EtV 1−α

t+1

) 1−ρ
1−α
] 1
1−ρ

, (194)

in which the process for productivity growth is given by

∆at+1 = ga + σaεat+1 − θjt+1, (195)

where the disaster component jt+1 is a Poisson random variable with intensity st, which evolves as

st+1 = (1− ρs)s+ ρsst +
√
stσsεst+1. (196)
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The pricing kernel is given by

Qt,t+1 = β

(
Ct+1

Ct

)−ρ  Vt+1(
EtV 1−α

t+1

) 1
1−α

ρ−α . (197)

Proposition 2A (Constant Job-Finding Rate Under EZ Preferences with Variable Disas-
ter Risk). Starting from the steady-state values of the total human capital of employed and unem-
ployed workers, Ze and Zu, with preferences of the form in (194), ρ = 1, and a process for productivity
shocks that follows (195) and (196), both the job-finding rate and unemployment are constant.

Proof. Here we show that with Epstein-Zin preferences and productivity shocks that follow (195)
and (196), both the job-finding rate and unemployment are constant. More generally, the multipliers
and allocations satisfy

µ̃ut = µ̃u, µ̃et = µ̃e, θt = θ, C̃t = C̃, Zet = Ze, and Zut = Zu, (198)

where variables with ‘̃’are scaled by productivity. We do so by showing that the equations character-
izing the solution to the planning problem, namely, (26)-(28) along with that problem’s constraints,
admit a solution of the form just described. Note that Epstein-Zin preferences with ρ = 1 reduce to

vt = (1− β)ct +
β

1− α log (Et {exp [(1− α)vt+1]}) . (199)

Now, let us simplify the term in the exponential function and use the notation ṽt+1 = vt+1−at+1, c̃t =

ct − at, and eat+1 = ∆at+1 − Et∆at+1. Then,

exp [(1− α)vt+1] = exp [(1− α)(vt+1 − at+1 + at+1 − Etat+1 + Etat+1 − at + at)]

= exp [(1− α)(ṽt+1 + ∆at+1 − Et∆at+1 + Etat+1)]

= exp [(1− α)Etat+1] exp [(1− α)(ṽt+1 + ∆at+1 − Et∆at+1)]

= exp [(1− α)Etat+1] exp [(1− α)(ṽt+1 + eat+1)] . (200)

Using ct = c̃t + at, and log (Et {exp [(1− α)Etat+1]}) = (1− α)Etat+1, (199) can be written as

vt = (1− β)c̃t + (1− β)at + βEtat+1 +
β

1− α log (Et {exp [(1− α)(ṽt+1 + eat+1)]})

= (1− β)c̃t + at + βEt∆at+1 +
β

1− α log (Et {exp [(1− α)(ṽt+1 + eat+1)]}) .

Recall from (170) that the stochastic discount factor for Epstein-Zin preferences under ρ = 1 is
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(
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)−1
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EtV

1−α
t+1

) 1
1−α
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,
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which we can rewrite as

Qt,t+1 = β exp−∆ct+1 + (1− α)vt+1 − log (Et {exp [(1− α)vt+1]})
= β exp−∆c̃t+1 −∆at+1 + (1− α)(ṽt+1 + ∆at+1)− log (Et {exp [(1− α)(ṽt+1 + ∆at+1)]})
= β exp−∆c̃t+1 −∆at+1 + (1− α)(ṽt+1 + eat+1)− log (Et {exp [(1− α)(ṽt+1 + eat+1)]}) ,

where to obtain the second equality we used ṽt+1 = vt+1 − at+1 and added and subtracted at, and to
obtain the third equality we added and subtracted Et∆at+1.

We now show that this system admits a solution in which µ̃ut, µ̃et, θt, C̃t, Zet, and Zut are constant.
First note that, under our conjectured solution,

Et
(
Qt,t+1e

∆at+1
)

= βEt
[
exp

(
−∆c̃t+1 + (1− α)(ṽt+1 + eat+1)− log

{
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e(1−α)(ṽt+1+eat+1)

]})]
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Et
(
Qt,t+1e

∆at+1
)

= βEt
[
exp

(
(1− α)(ṽt+1 + eat+1)− log

{
Et
[
e(1−α)(ṽt+1+eat+1)

]})]
= β.

So under this conjectured solution,

µ̃ut = b+ φ(1 + gu)Et
(
Qt,t+1e

∆at+1
{
λw(θ)η(θ)µ̃et+1 + [1− η(θt+1)λw(θt+1)]µ̃ut+1

})
reduces to

µ̃u = b+ φ(1 + gu)β [λwηµ̃e + (1− ηλw)µ̃u]

and
µ̃et = 1 + φ(1 + ge)Et

{
Qt,t+1e

∆at+1
[
(1− σ)µ̃et+1 + σµ̃ut+1

]}
reduces to

µe = 1 + φ(1 + ge)β [(1− σ)µ̃e + σµ̃u] ,

which, by the free-entry condition, implies that θt is constant. It follows that the human capital
stocks

Ze = φ(1 + ge)(1− σ)Ze + φ(1 + gu)λwZu and Zu = 1− φ+ φ(1 + ge)σZe + φ(1 + gu)(1− λw)Zu

are also constant, where we have assumed that the initial conditions for Zet and Zut are equal to the
posited constants Ze and Zu. Hence, aggregate consumption is constant C̃ = Ze+bZu−κφ(1+gu)Zu.
This verifies the conjectured constant solution.

Epstein-Zin Preferences with Long-Run Risk and no Preference Shocks. Consider our
model with Epstein-Zin preferences and long-run risk, but without discount rate shocks. In particular,
preferences are now given by

Vt =
[
(1− β)C1−ρ

t + β
(
EtV 1−α

t+1

) 1−ρ
1−α
] 1
1−ρ

. (201)
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Productivity growth now has a long-run risk component xt in that

∆at+1 = ga + xt + σaεat+1 and xt+1 = ρxxt + φxσaεxt+1, (202)

where the shocks εat and εxt are standard normal i.i.d. and orthogonal to each other. The pricing
kernel is

Qt,t+1 = β

(
Ct+1

Ct

)−ρ  Vt+1(
EtV 1−α

t+1

) 1
1−α

ρ−α .
Proposition 2B (Constant Job-Finding Rate Under EZ Preferences with Long-Run Risk).
Starting from the steady-state values of the total human capital of employed and unemployed workers,
Ze and Zu, with preferences of the form (201), ρ = 1, and a process for productivity shocks that
follows (202), both the job-finding rate and unemployment are constant.

Proof. The proof is identical to the proof of Proposition 2A. Simply note that eat+1 = ∆at+1−Et∆at+1

equals σaεat+1− θjt+1 in Proposition 2A and it equals σaεat+1 in Proposition 2B, but that distinction
is inconsequential for the proof.

E Numerical Solution of the Model

Here we describe the global algorithm that we employ to solve the model. We adopt a global numerical
strategy because asset prices are highly nonlinear under the asset-pricing preferences we consider.
(Petrosky-Nadeau, Zhang, and Kuehn 2018 highlight the importance of the model’s nonlinearities
when search frictions are present, even in the absence of risk-sensitive preferences.) Specifically, we
solve the model by projecting the global solution of our model onto the space spanned by a basis of
high-order Chebyshev polynomials and evaluate expectations by a multidimensional Gauss-Hermite
quadrature with a suffi ciently large number of nodes so that results are not sensitive to any small
increase or decrease in the number of nodes. We turn to providing a few details for each of our models.

Baseline Preferences. Recall that the sensitivity function is given by

λa(st) =
1

S
[1− 2 (st − s)]1/2 − 1. (203)

Rather than using the surplus consumption st − s as the state, it is convenient to use the term
g(st) ≡ [1− 2 (st − s)]1/2 in (203) as the state. Indeed, doing so allows for an accurate solution
for a smaller Chebyshev polynomial order rather than simply using the surplus consumption state.
Intuitively, the function g(st), which appears in the volatility of the surplus consumption process, is
hard to approximate with a polynomial in st − s due to its kink at st − s = 1/2. It is therefore more
appropriate to use g(st) as the state, from which we can recover st−s using powers of the transformed
state. We use Chebyshev polynomials of degree twenty for the transformation g(st) of the surplus
consumption state st − s and of degree five for the human capital states Zet and Zut.
As shown by Wachter (2005), the best practice in solving models with Campbell-Cochrane prefer-

ences is to consider a large and fine grid over the surplus consumption space that, importantly, places
many grid points close to zero. Accordingly, we construct a grid for the state g(st) that ranges from
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0 (the minimum value possible) to 8.4, reflecting a minimum value of S of 10−16 and so very close to
zero. We chose the maximum value by progressively widening the grid until results no longer change.
For the human capital states, we adopt instead an adaptive grid, namely, a grid that covers minimum
and maximum values of long simulations of the variables from the solved model.

After having set the grid St and the basis functions, our algorithm proceeds as follows. Let Sht,
h = 1, . . . , H, denote the h-th element of the grid, which spans the space of state (g(st), Zet, Zut).
We start from a constant guess for the functional θt = θ(0)(St) that maps elements of the state space
into values for market tightness. We then use that guess and the h nodes for tomorrow’s productivity
shocks used in the Gauss-Hermite quadrature to construct tomorrow’s values of the state Sh,t+1(j),
for j = 1, . . . , J and h = 1, . . . , H, using the laws of motion of the state variables. We can then
evaluate tomorrow’s values for θt+1 and hence compute µet and µut using (26) and (27). With those
values in hand, we can use (28) to compute a new value for the functional θ(1)(St) for each grid point.
We repeat this algorithm to calculate the n-th functional θ(n)(St) for all grid points. The algorithm
stops when their maximum differences are small, technically, when ‖θ(n)(St) − θ(n−1)(St)‖∞ < 10−6,
where ‖ · ‖∞ denotes the sup norm.

Campbell and Cochrane with External Habit. The global routine for preferences with exter-
nal habit is the same as for our baseline preferences with one modification. As before, we approx-
imate θt by Chebyshev polynomials in the states (g(st), Zet, Zut). However, for Campbell-Cochrane
preferences with external habit, st is an endogenous variable in that the innovations to it are en-
dogenous, since they depend on the process for consumption. In particular, to compute st+1, we
need to determine εct+1 ≡ ∆ct+1 − Et∆ct+1, which is a different function of (g(st), Zet, Zut) for every
realization of εat+1. We allow for this dependence by specifying a different Chebyshev polynomial in
the states (g(st), Zet, Zut) for each realization of εat+1. That is, we set a 100-point grid for productiv-
ity shocks εat+1, and for each value of εat+1 on this grid, we approximate st+1(εat+1) by Chebyshev
polynomials in the states (g(st), Zet, Zut). Letting j denote a grid point for εat+1 and St denote
the grid for (g(st), Zet, Zut), our algorithm starts from guesses for the functionals θt = θ(0)(St) and
st+1 = s(0)(St, j) for each grid point j = 1, . . . , 100 for εat+1 and constructs θ

(n)(St) and s(n)(St, j).
The algorithm stops when both θ(n) and s(n) converge. (Technically, when under the sup norm,
‖(θ(n)(St)− θ(n−1)(St), s(n)(St, j)− s(n−1)(St, j))‖∞ < 10−6.)

Baseline Preferences and Physical Capital. The degree of accuracy for surplus consumption
and the human capital states is the same as for the baseline model without physical capital. We span
the additional dimension of the state space, Kt/At, by a Chebyshev-polynomial of order five and an
adaptive grid. In solving the model, we iterate also over the functional for the investment-capital
ratio It/Kt = IK(St) using the optimality condition for investment.

Epstein-Zin Preferences with Long-Run Risk. We use Chebyshev polynomials of degree five
and an adaptive grid in all four dimensions of the state space (xt, st, Zet, Zut), which consists of the
persistence component of the productivity process xt, the discount-rate shock st, and the human
capital stocks of employed and unemployed workers, Zet and Zut. After having set the grid St and the
basis functions, our algorithm proceeds as follows. Let Sht, h = 1, . . . , H denote the h-th element of
the grid, which spans the space of the state, (xt, st, Zet, Zut). We start from a constant guess for the
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functionals for the market tightness θt = θ(0)(St) on and the detrended value function wt = w(0)(St)
where wt = log(Wt) ≡ log[Vt/(S

1/(1−ρ)
t Ct)] on the grid St. We then use that guess and the h nodes

for tomorrow’s shocks for the Gauss-Hermite quadrature to construct tomorrow’s values of the state
Sh,t+1(j) for j = 1, . . . , J and h = 1, . . . , H, using the laws of motion of the state variables. We
can then evaluate tomorrow’s values for θt+1 and wt+1 and hence compute µet and µut using (26)
and (27) and dt using (158). Once we have those values, we can use (28) and (157) to compute a
new value for the functionals θ(1)(St) and w(1)(St) for each grid point. We repeat this algorithm to
calculate the n-th functionals θ(n)(St) and w(n)(St) for all grid points. The algorithm stops when
‖(θ(n)(St)− θ(n−1)(St), w(n)(St)− w(n−1)(St))‖∞ < 10−6.

Epstein-Zin Preferences with Variable Disaster Risk. We use Chebyshev polynomials of
degree five and an adaptive grid in all three dimensions of the state space, which consists of the time-
varying disaster intensity st and the stocks of human capital of employed and unemployed workers,
Zet and Zut. The algorithm is analogous to the one for Epstein-Zin preferences with long-run risk,
except that the state space is now three-dimensional.

Affi ne Discount Factor Model. We use Chebyshev polynomials of degree twenty in the s-
dimension and of degree five for the stocks of human capital of employed and unemployed workers,
Zet and Zut, over an adaptive grid. The algorithm is analogous to the one for Campbell-Cochrane
preferences with exogenous habit.

F A More General Human Capital Process

So far, we have considered a simple process of human capital accumulation such that human capital
grows at a constant rate when a consumer is employed and decays at a constant rate when a consumer
is unemployed. In the data, though, wage growth tends to decline as experience in the labor market
accumulates. To accommodate this feature of the data, we consider a more general human capital
process as in Kehoe, Midrigan, and Pastorino (2019) in the spirit of that in Ljungqvist and Sargent
(1998, 2008), whereby human capital zt evolves according to the autoregressive process

log(zt+1) = (1− ρz) log(z̄e) + ρz log(zt) + σzεzt+1 (204)

when a consumer is employed, whereas it evolves according to

log(zt+1) = (1− ρz) log(z̄u) + ρz log(zt) + σzεzt+1 (205)

when a consumer is unemployed, where εzt+1 is a standard Normal random variable. Newborn con-
sumers start as unemployed with general human capital z, where log(z) is drawn from the normal
distribution N(log(z̄u), σ

2
z/(1− ρ2

z)). We assume that z̄u < z̄e so that when a consumer is employed,
on average, human capital zt drifts up toward a high level of productivity z̄e from the low average level
of productivity z̄u of newborn consumers. Analogously, when a consumer is unemployed, on average,
human capital zt depreciates and hence drifts down toward a low level of productivity, z̄u, which we
normalize to one so that log(z̄u) = 0. The parameter ρz governs the rate at which human capital
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converges toward z̄e when a consumer is employed and toward z̄u when a consumer is unemployed.
Hence, the higher ρz is, the slower human capital accumulates during employment, the slower it depre-
ciates during unemployment, and the slower wages grow with experience. Incorporating idiosyncratic
shocks εzt+1 allows the model to reproduce the dispersion in wage growth rates observed in the data.
(See Rubinstein and Weiss 2006.)

A consumer with human capital zt produces Atzt when employed but, in contrast to our baseline
model, bAt when unemployed. Also in contrast to our baseline model, we assume that a firm incurs the
cost κAt to recruit a consumer with any level of human capital. (Recall that the earlier scaling of home
production and the cost of posting vacancies by zt was purely motivated by analytical convenience
to allow the model to aggregate.) To ensure that the job-finding rate λwt(z) lies between zero and
one, we assume that the matching function is mt(ubt(z), vt(z)) = min{ubt(z), Bubt(z)ηvt(z)1−η}. A
competitive search equilibrium is defined as before with the free-entry condition for market z now
given by

κAt ≥ λft(θt(z))[Yt(z)−Wt(z)], (206)

with equality if vacancies are created in an active market z in that the measure of vacancies vt(z) is
strictly positive. Here we focus on our baseline preferences with exogenous habit.

We parametrize the model as before with few modifications. With z̄u normalized to one, the
parameters of the human capital process are z̄e, ρz, and σz. We target a net annual wage growth
over the first 10 years in the labor market of 5.5%, based on the estimates by Rubinstein and Weiss
(2006) discussed in the paper, and a difference in the log real wages between workers with 30 years of
experience and those with 1 year of experience of 1.2, based on the estimates by Elsby and Shapiro
(2012) also discussed in the paper. These two targets help pin down ρz and z̄e. We choose σz to
match the standard deviation of annual wage growth for workers with up to 10 years of labor market
experience, which is 1.2 percentage points according to the estimates by Rubinstein and Weiss (2006)
from the National Longitudinal Survey of Youth (NLSY).

Since, unlike our baseline model, this version of the model is not amenable to aggregation, we need
to record the measures of human capital among employed and unemployed workers, (et(z), ut(z)), as
part of the endogenous state of the economy. This feature makes the model much more diffi cult to
solve numerically than our baseline model. For this reason, we use a variant of the algorithm by
Krusell and Smith (1996) that, unlike in typical applications such as those in Winberry (2018), needs
to accurately capture time-varying risk in aggregate variables.

Notwithstanding this complexity, this version of the model too successfully solves the unemploy-
ment volatility puzzle. In particular, the model produces only a slightly lower volatility for the
job-finding rate and unemployment than in the data, respectively, 6.38 versus 6.66 and 0.65 versus
0.75. In this sense, our results based on a simple model of human capital accumulation are robust to
extensions that capture additional features of the micro data on returns to labor market experience.

G Alternating Offer Bargaining

In the introduction of the paper, we claim that under alternating offer bargaining, wage setting can
be effi cient. Here we show that this is the case when two conditions hold: the exogenous rate of
breakdown of bargaining between workers and firms converges to one and the probability that a
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worker makes the first offer equals the elasticity of the matching function with respect to the measure
of unemployed workers. We now briefly lay out the alternating offer bargaining game of Hall (2017)
and then prove our claim.

Using our notation, the formulae for the resource constraint, the post-match value Wpt, the un-
employment value Ut, the present value of output in a match Yt, the value of a vacancy Vt, and
the free-entry condition in the alternating offer bargaining equilibrium are identical to those in the
competitive search equilibrium, but without human capital accumulation in that ge = gu = 0 and
z = 1 for all consumers. The only two remaining differences between Hall’s model and our model is
that wages in Hall’s model are set in an imperfectly competitive rather than a competitive way and
the stochastic discount factor Qt,t+1 is an exogenous rather than an endogenous one.

The game can be described as follows. The worker makes the first wage offer with probability
p and the firm makes the first wage offer with probability 1 − p. In each subsequent period, firms
and workers deterministically alternate making offers each period, if bargaining has not broken down,
until an offer is accepted. If period t is one in which the firm makes the offer, we denote the offer by
Wft, whereas if period t is one in which the worker makes the offer, we denote it by Wwt– these offers
are contingent on the exogenous state εt, but we have suppressed their explicit dependence on εt for
simplicity. In each period, with probability δ bargaining exogenously breaks down, in which case the
firm returns to the market with an unfilled vacancy and the worker enters unemployment. When the
firm offers Wft in period t, then the worker can either accept it, reject it and make a counteroffer
Wwt+1 in period t + 1 if bargaining does not exogenously break down, or abandon negotiations and
immediately return to unemployment. The firm has symmetric options if it is the worker’s turn to
make an offer. The cost of bargaining to the worker is that in each period of bargaining, the worker
only receives the value of home production bAt rather than a wage, so the implicit delay cost is the
difference between foregone wages and home production. The cost of bargaining to the firm is the
cost ψAt of making a counteroffer to the worker at t; we refer to ψ as the haggling cost. Thus, the
three parameters that characterize this bargaining scheme are (p, δ, ψ).

As explained in Hall and Milgrom (2008), standard logic implies that the firm will make the best
possible offer from its perspective so that the worker will prefer to accept it rather than to make a
counteroffer, in the event of no exogenous breakdown, or to abandon negotiations. Thus, the firm’s
offer Wft satisfies

Wft +Wpt = max {bAt + φ(1− δ)Et [Qt,t+1(Wwt+1 +Wpt+1)] + φδEt (Qt,t+1Ut+1) , Ut} , (207)

where the maximum ensures that the worker does not strictly prefer unemployment today to accepting
such an offer. Of course, the firm’s offer Wft must be smaller than the discounted value of output
from the match with the worker, Yt, or else the firm would prefer to stay idle. Thus, Wft ≤ Yt. In
turn, the worker will make the best possible offer from the worker’s perspective so that the firm will
prefer to accept it rather than to make a counteroffer, in the event of no exogenous breakdown, or to
abandon negotiations. Therefore, the worker’s offer satisfies

Yt −Wwt = max{−ψAt + φ(1− δ)Et[Qt,t+1(Yt+1 −Wft+1)], 0}, (208)

where the maximum ensures that the firm does not strictly prefer to abandon negotiations rather
than to accept the offer. Clearly, the worker will only make offers such that employment is preferable
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to unemployment, that is, Wwt+Wpt ≥ Ut must hold– recall thatWpt is a worker’s post-match value.
Since a family consists of a large number of consumers who are independently drawn to make the first
offer in bargaining, the value to a family of the wages of all its consumers who are bargaining at t is
Wmt = pWwt + (1− p)Wft. Likewise, Wmt is the value to the firm of the present value of wages from
bargaining.

G.1 Effi ciency

We now show that when the duration of bargaining is short, allocations are close to effi cient and thus
close to the competitive search ones, but when the duration is long, allocations are very ineffi cient.

Proposition A.1. (Effi ciency of Alternating Offer Bargaining). When the probability p
that the worker makes the first offer equals the elasticity of the matching function with respect to the
measure of unemployed workers, then the allocations in a sequence of bargaining games indexed by
the breakdown probabilities {δn}∞n=1 converge to the constrained effi cient allocations as δn converges
to one.

Recall that an allocation is effi cient if it solves the planning problem in the paper. Proposition
A.1 directly applies to the model in Hall (2017) with an exogenous discount factor. It also applies to
our model if we modify the equilibrium concept from that of competitive search equilibrium to that
of alternating offer bargaining equilibrium.

Proof. For each δ(n) we have

Wft(n) +Wpt(n) = max

{
bAt + [1− δ(n)]φEt {Qt,t+1(n)[Wwt+1(n) +Wpt+1(n)]}

+δ(n)φEt [Qt,t+1(n)Ut+1(n)] , Ut(n)

}
(209)

and
Yt −Wwt(n) = max{−ψAt + φ[1− δ(n)]EtQt,t+1(n)(Yt+1 −Wft+1(n)), 0}. (210)

Clearly, all of these sequences are continuous in n. Taking the limit of both sides of these equations
in n yields

Wft +Wpt = Ut (211)

and
Yt −Wwt = 0, (212)

where in (211) we have used that for δ(n) suffi ciently close to 1, the two terms in the maximum
converge whereas in (212) the first term in the maximum is strictly negative. By continuity, the
participation constraints Wft ≤ Yt andWwt +Wpt ≥ Ut also clearly hold. Hence, substituting forWwt

and Wft from (211) and (212) into Wmt = pWwt + (1− p)Wft and using that p = η, we obtain

Wmt = η (Ut −Wpt) + (1− η)Yt. (213)

Adding Wpt − Ut to both sides and collecting terms gives that

Wmt +Wpt − Ut = (1− η)(Yt +Wpt − Ut), (214)

that is, a worker receives a share 1− η of the surplus in that Wmt +Wpt −Ut = (1− η)Xt, where the
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surplus is defined as

Xt = (Wmt +Wpt − Ut) + (Yt −Wmt) = Yt +Wpt − Ut. (215)

Hence, the firm’s receives a share η of the surplus in that Yt −Wmt = ηXt. But this surplus sharing
rules are precisely the conditions for the effi ciency of Nash bargaining when the Hosios condition
holds. Hence, the allocations are effi cient.

G.2 The Cyclicality of the User Cost of Labor

Here we show that Hall (2017) generates sizable fluctuations in unemployment only under a parame-
trization of wage setting that yields very rigid and ineffi cient wages. It turns out that the critical
parameter governing the stickiness of wages in Hall (2017) is the probability of exogenous breakdown
of bargaining, δ. It is not easy to interpret this exogenous breakdown probability based on actual
bargaining behavior because, in equilibrium, the first offer is accepted regardless of the value of δ.
We find it therefore useful to translate δ into units of time by calculating the mean duration of the
opportunity to bargain to form a match, if bargaining continues until it exogenously breaks down.
Correspondingly, we refer to 1/δ as the duration of a job opportunity during bargaining. It turns out
that the longer is the duration of a job opportunity, the stickier are real wages. In Hall’s baseline
model, this duration is 77 months.

In Table A.6, the third column illustrates the parameters and results in Hall (2017) reproduced
from the replication code for Hall (2017). Note that when the duration of a job opportunity is 77

months, the cyclicality of the user cost of labor is 0.1%. That is, after a one percentage point increase
in the unemployment rate, the user cost of labor actually slightly increases. Recall that Kudlyak
(2014) estimates that after a one percentage point increase in the unemployment rate, the user cost
of labor falls by 5.2%– Basu and House (2016) obtain a similar estimate of 5.8%. In this sense, Hall’s
model generates an extreme degree of wage rigidity that is at odds with the estimated cyclicality of
the user cost of labor.

We now turn to determine the duration of a job opportunity that generates the observed degree of
wage cyclicality. As the second column in Table A.6 shows, at 1/δ = 2.6 months, the model generates
the observed cyclicality of the user cost of labor. With this degree of rigidity, however, the model
generates 1/25th of the volatility of unemployment in the data (0.03/0.75). (For this exercise, as we
vary the duration of a job opportunity, we adjust the vacancy posting cost in Hall’s (2017) replication
code to keep the mean unemployment rate unchanged.)

The idea behind Hall’s mechanism is simple: in downturns, the user cost of labor does not fall,
even though the present value of what a worker will produce over the course of a match greatly falls.
Hence, firms greatly contract their vacancies in recessions. Such a mechanism, though, is inconsistent
with the evidence on the cyclicality of the user cost of labor.

We have shown that the results in Hall (2017) depend critically on the duration of a job opportu-
nity, 1/δ. When this duration is short, the model generate very small fluctuations in unemployment,
whereas when it is long, the model generates large fluctuations. Here we further link this key para-
meter to the effi ciency of the resulting allocations: when the duration is short, allocations are close
to effi cient and thus close to the competitive search ones, but when the duration is long, allocations
are very ineffi cient.
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Proposition A.1 offers an additional interpretation of the results in Table A.6, namely, that ineffi -
ciencies are central to the amplification mechanism in Hall (2017): the lower is 1/δ, the more effi cient
are the allocations in Hall (2017), the smaller is the impact of changes in the stochastic discount
factor on the volatility of the job-finding rate, and so the lower is the volatility of unemployment– by
Proposition A.1, allocations are effi cient when δ = 1. Indeed, for Hall’s model to generate the ob-
served volatility of unemployment, the economy has to be very ineffi cient in that the duration of a
job opportunity has to be 6.2 years rather than one month.

We can shed light on the mechanism in Hall (2017) also by solving for the time-varying Nash
bargaining weights of firms and workers that produce the job-finding rates in the alternating offer
bargaining equilibrium. Recall that the effi cient allocations are achieved under Nash bargaining with
a constant bargaining weight equal to η, which equals 1/2 in both Hall’s and our parametrizations.
In Figure A.3, we plot this time-varying Nash bargaining weight for a worker in Hall’s economy. We
see that in deep downturns, the worker’s bargaining weight increases sharply relative to its level in
booms. Thus, a key intuition for Hall’s mechanism is that firms understand that during downturns
workers will demand much larger surplus shares in order to accept a job. Anticipating such behavior,
firms drastically cut vacancies and so unemployment drops.

H Comparison with the Differential Productivity Mecha-
nism of Search Models

In the paper, we argue that our mechanism is fundamentally different from those in the large litera-
ture discussed by Ljungqvist and Sargent (2017) that addresses the unemployment volatility puzzle.
Here we establish this claim. The literature reviewed by Ljungqvist and Sargent (2017) builds in
a mechanism of differential productivity across sectors. Specifically, it assumes that an increase in
productivity leads to an increase in the productivity of working in the market relative to both the
productivity of working at home and the cost of posting vacancies. Then, as Shimer (2005, p. 25)
explains, “an increase in labor productivity relative to the value of nonmarket activity and to the
cost of advertising a job vacancy makes unemployment relatively expensive and vacancies relatively
cheap. The market substitutes toward vacancies.”That is, in a boom, the differential increase in
productivity in the market draws workers out of nonmarket activity and into the market.

In such a literature, authors compute the steady-state response of the job-finding rate and un-
employment to a steady-state change in aggregate productivity. We show that our model works
differently by proving two results. First, if we perform the same steady-state experiment in our
model, we obtain no change in the job-finding rate. Second, once we modify the models in Ljungqvist
and Sargent (2017) so that productivity enters those models as it does ours, then in both the basic
matching model and the alternating offer bargaining model of Hall and Milgrom (2008), a change in
steady-state productivity has similarly no effect on the job-finding rate. We show an analogous result
for the training cost model of Pissarides (2009), also reviewed by Ljungqvist and Sargent (2017).
(Note that our results are reminiscent of the result on the neutrality of productivity shocks by Shimer
2010. See also a related intuition by Ljungqvist and Sargent 2017 in footnote 28 of their paper, page
2664.)
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H.1 Steady-State Change in Aggregate Productivity in Baseline Model

We consider the experiment conducted by Ljungqvist and Sargent (2017) in our model, namely a
steady-state increase in A, and obtain the following result. For simplicity, we abstract from growth.

Proposition A.2 (Zero Elasticity of Job-Finding Rate in Baseline Model). In our
baseline model, the steady-state levels of the job-finding rate and unemployment are independent of
steady-state productivity, A.

To see why, note that in the baseline model Qt,t+1 = β at a steady state where St = S and
Ct = C. Evaluating the expression for the job-finding rate in (120) at a steady state gives log(λw) =

χ+(1−η) log ((µe − µu)/A) /η, where µe and µe are the steady-state versions of (22) and (23), namely,

µe
A

=1+φ(1+ge)β
[
(1− σ)

(µe
A

)
+σ
(µu
A

)]
and

(µu
A

)
=b+φ(1+gu)β

[
ηλw

(µe
A

)
+(1− ηλw)

(µu
A

)]
.

Clearly, (µe− µu)/A is independent of A and so is the job-finding rate. Notice that key to this result
is that the steady-state value of the discount factor does not vary with the steady-state value of A.
Since this same property holds for a broad class of consumption-based discount factors, including all
of those considered here, all of these discount factors are consistent with this proposition.

H.2 Basic Matching Model

Consider the basic matching model in Ljungqvist and Sargent (2017). Using notation similar to ours,
in this model consumers are risk neutral with discount factor β. A consumer produces A units of
output when employed and b units of output when unemployed. The cost of posting a vacancy is κ,
the exogenous separation rate is σ, the worker’s bargaining weight is γ, and the job-filling rate for
a firm is λf (θ) given market tightness θ. Equation (12) in Ljungqvist and Sargent (2017, p. 2635)
shows that the equilibrium value of market tightness is determined by the free-entry condition, which
we rearrange and express as

κ = (1− γ)λf (θ)
β(A− b)

1− β[1− σ − γθλf (θ)]
. (216)

These authors then differentiate this equation to derive d log(θ)/d log(A) and explain how their mea-
sure of fundamental surplus given byA−b is critical for understanding the magnitude of this derivative.
In contrast, in our model, the output produced in the market and the cost of posting a vacancy are
proportional to productivity so that b and κ are replaced by bA and κA, respectively. Observe that
scaling home production b by A is consistent with the findings in Chodorow-Reich and Karabarbou-
nis (2016), as discussed in the paper. Scaling κ by A is consistent with the view in Shimer (2010)
that posting vacancies absorbs a fixed amount of workers’time in recruiting that could otherwise be
devoted to producing goods. When this is the case, the free-entry condition becomes

κA = (1− γ)λf (θ)
β(1− b)A

1− β[1− σ − γθλf (θ)]
. (217)

Since A cancels out from both sides of this equality, θ is constant and thus d log(θ)/d log(A) = 0.

Proposition A.3 (Zero Elasticity of Job-Finding Rate in Basic Matching Model). In
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the basic matching model, if home produced output and the cost of posting a vacancy are proportional
to productivity, then the change in steady-state unemployment with respect to a change in steady-state
productivity is zero regardless of all other parameters.

Note that this result holds regardless of the size of the home production parameter b, which plays
an important role in the debate that originated with Shimer (2005) and Hagedorn and Manovskii
(2008). More generally, this property holds independently of the size of the fundamental surplus,
which, instead, is central to the analysis in Ljungqvist and Sargent (2017).

H.3 Hall and Milgrom (2008): Alternating Offer Bargaining Model

A similar result also applies to alternating offer bargaining models. Consider the exposition in
Ljungqvist and Sargent (2017) of Hall and Milgrom (2008). In this model, firms and workers make
alternating offers and after each unsuccessful bargaining round, the firm incurs a haggling cost of ψ
of making a new offer while the worker receives b. There is a probability δ that the job opportunity
exogenously expires across bargaining rounds and the worker reenters unemployment. Ljungqvist and
Sargent (2017) assume that δ = σ so the probability that a job opportunity expires equals the prob-
ability of exogenous separation between a firm and a worker. Under this assumption, the free-entry
condition (equation (36), p. 2648 of Ljungqvist and Sargent 2017) can be rearranged to obtain

κ =
λf (θ)β

1− β(1− σ)

[
A− b+ β(1− σ)(A+ ψ)

1 + β(1− σ)

]
. (218)

Now, suppose we extend the earlier idea in Shimer (2010) that recruiting workers takes a fixed amount
of an existing worker’s time to the idea that each round of bargaining also absorbs a fixed amount of
a worker’s time in haggling. Under this interpretation, it is natural to scale both κ and ψ by A, since
both parameters reflect the foregone opportunity of producing goods for a worker engaged in either
recruiting or bargaining. Hence, (218) becomes

κA =
λf (θ)β

1− β(1− σ)

[
1− b+ β(1− σ)(1 + ψ)

1 + β(1− σ)

]
A. (219)

Since A cancels out from both sides of this equality, θ is constant and so d log(θ)/d log(A) = 0. Note
that this same result holds even if δ does not equal σ because all value functions are proportional to
A.

Proposition A.4 (Zero Elasticity of Job-Finding Rate in Alternating Offer Bargaining
Model). In the alternating offer bargaining model, if home produced output, the cost of posting
a vacancy, and the haggling cost are proportional to productivity, then the change in steady-state
unemployment with respect to a change in steady-state productivity is zero regardless of all other
parameters.

H.4 Pissarides (1999): Training Costs

Here we revisit the analysis of Ljungqvist and Sargent (2017) for the Pissarides’s (2009) model with
training costs. Pissarides (2009) shows that the presence of fixed training costs that are incurred after
bargaining has been concluded can make unemployment more responsive to productivity changes.
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Formally, firms pay a cost κ to post a vacancy and when a match with a worker is formed, they pay
a fixed cost h to train the worker for the job. In this case, the value of match surplus is reduced by
the fixed cost training and hence the free-entry condition becomes

κ = (1− γ)λf (θ)β

{
A− b

1− β [1− σ − γθλf (θ)]
− h
}
. (220)

Now suppose that we extend the logic of Shimer (2010) to that of training a new worker. Specif-
ically, we assume that an existing worker must reduce the time devoted to production by h units to
train a new worker. Since an existing worker could devote the same amount of time to producing
output and the output produced by a worker is proportional to A, then a doubling of productivity
also doubles the training cost. Hence, here h is replaced by hA. The analogous free-entry condition
is

Aκ = (1− γ)λf (θ)β

{
(1− b)A

1− β [1− σ − γθλf (θ)]
− hA

}
. (221)

Since A cancels from both sides of this equality, θ does not depend on A and so d log(θ)/d log(A) = 0.
Proposition A.5 (Zero Elasticity of Job-Finding Rate in Training Cost Model). In the

matching model with fixed training costs, if home produced output, the cost of posting a vacancy, and
training costs are proportional to productivity, then the change in steady-state unemployment with
respect to a change in steady-state productivity is zero regardless of all other parameters.

In sum, our model produces large movements in response to productivity changes but works
differently from those analyzed by Ljungqvist and Sargent (2017) in their excellent synthesis of the
work on the unemployment volatility puzzle. All of these models depend critically on the differential
productivity mechanism, while ours does not.

I Data

This appendix contains data details omitted from the paper.

I.1 Wage Growth on the Job and Wage Loss off the Job

Here we describe how we infer the rate of human capital accumulation on the job and depreciation
off the job, respectively, from observed wage growth during employment and wage changes associated
with spells of nonemployment.

Evidence onWage Growth. Wemeasure the rate of human capital accumulation on the job based
on the estimates of wage growth by Rubinstein and Weiss (2006) from a sample of workers from the
1979-2000 waves of the NLSY, who are between 14 and 21 years of age in 1979 and are surveyed
annually since the initial wave of the survey in 1979. These authors exclude from their sample
the military sub-sample and the non-black, non-Hispanic disadvantaged samples. They also omit
observations on workers with missing data on own or parents’education, Armed Forces Qualification
Test score, or labor market outcomes, and on individuals enrolled in schooling in a given year. These
authors further exclude workers with a reported hourly wage lower than $4 or higher than $2,000
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(adjusted for the 2000 CPI) and individuals who work less than 35 weeks or less than $1,000 annual
hours. To be able to estimate wage growth, the authors restrict their sample according to these
criteria in two consecutive years. For each individual in the resulting sample, the authors calculate
average annual wage growth by experience.

As reported in their Table 2b, Rubinstein and Weiss (2006) estimate that the average annual
growth rate of real hourly wages is 7.7% for individuals with up to 10 years of labor market experience,
3.3% for individuals with 11 to 15 years of labor market experience, and 4.9% for individuals with 16
to 25 years of labor market experience, gross of the annual growth rate of aggregate productivity that
we calculate as equal to 2.2%. Given the impossibility of estimating growth rates at higher levels of
experience, for the life-cycle model, we interpolate these estimated growth rates by nonlinear least
squares according to the following specification,

∆wt ≡ f(xt) = log {exp(gw) + exp [β0 + β1 exp(−β2xt)]}+ εt, (222)

where∆wt denotes the growth rates of wages estimated by Rubinstein andWeiss (2006) and xt denotes
labor market experience. We extrapolate growth rates for the missing experience years based on the
estimates of the parameters of (222). To understand (222), note that the expression on the right-hand
side of (222) is the so-called soft maximum between the arithmetic mean of the three growth rates
estimated by Rubinstein and Weiss (2006), namely, gw = 5.3%, and the function β0 + β1 exp(−β2xt).
To see how the parameters (β0, β1, β2) are identified, observe that

m(xt) ≡
exp(Ef(xt + 1))− exp(gw)

exp(Ef(xt))− exp(gw)
=

exp [β0 + β1 exp(−β2xt − β2)]

exp [β0 + β1 exp(−β2xt)]
= eβ1 exp(−β2xt−β2)−β1 exp(−β2xt).

Thus, the ratio log(m(x′t))/ log(m(xt)) for any two xt and x′t,

log(m(x′t))

log(m(xt))
=
β1[exp(−β2)− 1] exp(−β2x

′
t)

β1[exp(−β2)− 1] exp(−β2xt)
= exp(−β2(x′t − xt)),

identifies β2. Once β2 is identified, m(xt) or m(x′t) identifies β1 and exp(Ef(xt)) evaluated at any
other xt identifies β0. Based on this procedure, we estimate that the average annual growth rate of
real hourly wages is 4.86% up to the first 10 years of labor market experience, and is 3.22% for the
remaining years (up to 40).

Evidence on Wage Loss off the Job. We recover the rate of human capital depreciation off
the job from the wage changes resulting from spells of nonemployment, defined as episodes of either
unemployment or nonparticipation. We measure the change in the wages of workers who experience a
transition from employment to nonemployment and back to employment as the percentage difference
between the first wage in the first employment spell after nonemployment and the last wage in the
last employment spell before nonemployment.

To this purpose, given the typical short duration of nonemployment spells in U.S. labor markets, we
use monthly data from the Panel Study of Income Dynamics (PSID) family and individual (merged)
files– see Krolikowski (2017) for a similar strategy. To elaborate, the PSID starts in 1968 with an
interview of approximately 5,000 families, and follows any new families formed from the original group
of families. In the survey years prior to 1988, though, the PSID did not collect monthly information on
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employment status at different employers so it is not possible to calculate monthly employment spells
for these years. Moreover, although between 1968 and 1997 interviews were conducted annually, since
1997 interviews have been biennial. For these reasons, we only use data from the 1988-1997 waves.
In order to obtain results that are comparable to alternative data sources and for consistency with
the sample we used to estimate wage growth on the job, we restrict the sample to working-age males
aged 18 through 60. We omit observations on individuals who are self-employed, and use individual
weights to account for the PSID’s poverty over-sample and nonrandom attrition.1

An important feature of the data for our purposes is that for the years between 1988 and 1997,
respondents were asked to report their employment status in each month of the previous calendar
year, as well as monthly employment information for up to two main employers. From these monthly
information, it is then possible to determine the actual length of employment and nonemployment
spells experienced by workers.2 The data also include detailed information on wages. Specifically, for
employed individuals, the data provide the starting wage at a worker’s current employer as well as
the ending wage at the worker’s former employer. Similarly, for nonemployed individuals, the data
provide the starting wage at a worker’s former employer and the ending wage at the worker’s employer
before the former one. Combined with information on workers’labor force status, this information
allows us to calculate wage changes associated with transitions from employment to nonemployment
and back to employment (E-N-E) of interest.

Net of the annual growth rate of aggregate productivity of 2.2%, we estimate the average change
in hourly wages between the first wage after a complete spell of nonemployment and the last wage
before such a spell to be 1.43% for workers with less than 10 years of labor market experience and
−12.26% for workers with more than 10 years of labor market experience.

I.2 Job-Finding Rate and Unemployment Rate

We rely on the method in Shimer (2012) described in the paper to compute the mean and standard
deviation of the job-finding rate and (constant-separation) unemployment rate overall and by expe-
rience groups. Specifically, we use monthly data from the Bureau of Labor Statistics (BLS) between
1948 and 2007 and compute quarterly average of monthly job-finding and employment rates. For
the experience-specific counterparts of these statistics, we use BLS monthly data between 1976 and
2007 since information on short-term unemployment is unavailable before 1976. Given that the BLS
provides these statistics only for selected age ranges, we consider only those age groups that we can
map into the experience groups of interest as defined by workers with less than 10 or more than 10
years of labor market experience (up to 40). Moreover, since the age-specific employment data from
the BLS are available only as non-deseasonalized, we apply to these data the same de-seasonalization
procedure that the BLS applies to the aggregate data using the 13ARIMA-SEATS (X-13) seasonal
adjustment program that the BLS provides.

We then compute the mean and standard deviation of the job-finding rate and the unemployment
rate for workers with up to 25 and up to 35 years of age and for workers over 25 and over 35 years of age.
Since the mean and median number of years of education in the United States are approximately 12,

1We include the supplementary low income sample and the 1997 immigrant sample in the analysis, but exclude the
Latino sample introduced in 1990. We are grateful to Pawel Krolokowski for assistance in the use of these data.

2Transition probabilities based on such a sample are broadly consistent with those obtained from the Survey of
Income and Program Participation (SIPP) and the Current Population Survey (CPS).
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we interpret the average mean and standard deviation of the job-finding rate and the unemployment
rate among workers with up to 25 and up to 35 years of age as the mean and standard deviation of
the job-finding rate and the unemployment rate for workers with less than 10 years of labor market
experience, reported in Table 4 in the paper. Similarly, we interpret the average mean and standard
deviation of the job-finding rate and the unemployment rate among workers with over 25 and over
35 years of age as the mean and standard deviation of the job-finding rate and the unemployment
rate for individuals with more than 10 years of labor market experience, also reported in Table 4. We
repeat a similar procedure for the autocorrelation of the job-finding rate and the unemployment rate
and for the correlation between the job-finding rate and the unemployment rate for workers with less
than 10 years of labor market experience and more than 10 years of labor market experience.
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Table A.1: Implications of Search Economies vs. Endowment Economies for Stock and Bond Prices

Data Baseline CC EZ w/ EZ w/ Affine
LRR Disasters SDF

Search Economies
Mean excess return (%p.a.) 6.96 6.30 6.38 4.61 4.80 6.96
S.d. excess return (%p.a.) 15.6 14.1 15.2 10.3 10.7 15.6
Mean excess return / s.d. excess return (p.a.) 0.45 0.45 0.45 0.45 0.45 0.45
Mean log price-dividend ratio 3.51 3.36 3.37 3.77 3.24 3.24
S.d. log price-dividend ratio 0.44 0.36 0.36 0.36 0.36 0.36
Mean 20-year real yield (%p.a.) 4.81 3.75 3.84 2.80 -1.38 4.36
S.d. 20-year real yield (%p.a.) 2.00 2.20 2.28 1.25 2.19 2.11
Mean 20-year nominal yield (%p.a.) 7.71 7.73 7.81 6.48 2.28 8.43
S.d. 20-year nominal yield (%p.a.) 2.41 2.28 2.37 1.27 2.20 2.24

Endowment Economies
Mean excess return (%p.a.) 6.96 6.85 6.74 4.48 4.84 6.94
S.d. excess return (%p.a.) 15.6 15.3 15.1 9.9 10.8 15.5
Mean excess return / s.d. excess return (p.a.) 0.45 0.45 0.45 0.45 0.45 0.45
Mean log price-dividend ratio 3.51 3.29 3.30 3.78 3.69 3.23
S.d. log price-dividend ratio 0.44 0.37 0.36 0.31 0.36 0.36
Mean 20-year real yield (%p.a.) 4.81 4.34 4.47 2.82 -1.42 4.36
S.d. 20-year real yield (%p.a.) 2.00 2.34 2.36 1.26 2.20 2.11
Mean 20-year nominal yield (%p.a.) 7.71 8.30 8.42 6.50 2.20 8.43
S.d. 20-year nominal yield (%p.a.) 2.41 2.41 2.42 1.28 2.21 2.24

Table A.2: Parametrization and Results for Model with Campbell-Cochrane Preferences with External Habit

Panel A: Parameters Panel B: Moments

Endogenously Chosen Targeted Data Model

ga, mean productivity growth (%p.a.) 2.22 Mean productivity growth (%p.a.) 2.22 2.22
σa, s.d. productivity growth (%p.a.) 1.84 S.d. productivity growth (%p.a.) 1.84 1.84
κ, hiring cost 0.975 Mean unemployment rate 5.9 5.9
β, time preference factor 0.999 Mean risk-free rate (%p.a.) 0.92 0.92
S̄, mean of state St 0.2087 S.d. risk-free rate (%p.a.) 2.31 2.31
α, inverse EIS 5.0 Maximum Sharpe ratio (p.a.) 0.45 0.45

Assigned Labor Market Results

B, efficiency of matching technology 0.46 Mean job-finding rate 0.46 0.46
b, home production parameter 0.6 S.d. job-finding rate 6.66 6.69
σ, probability of separation 0.028 Autocorrelation job-finding rate 0.94 0.99
η, matching function elasticity 0.5 S.d. unemployment rate 0.75 0.75
φ, survival probability 0.9972 Autocorrelation unemployment rate 0.97 0.99
ρs, persistence of state 0.9944 Correlation unemployment, job-finding rate -0.96 -0.98
ge, human capital growth when employed (%p.a.) 3.5

Asset Market Results

Mean excess return (%p.a.) 6.96 6.38
S.d. excess return (%p.a.) 15.6 15.2
Mean excess return / s.d. excess return (p.a.) 0.45 0.45
Mean log price-dividend ratio 3.51 3.37
S.d. log price-dividend ratio 0.44 0.36



Table A.3: Parametrization and Results for Model with Epstein-Zin Preferences with Long-Run Risk

Panel A: Parameters Panel B: Moments

Endogenously Chosen Targeted Data Model

ga, mean productivity growth (%p.a.) 2.22 Mean productivity growth (%p.a.) 2.22 2.22
σa, s.d. productivity growth (%p.a.) 1.80 S.d. productivity growth (%p.a.) 1.84 1.84
κ, hiring cost 1.31 Mean unemployment rate 5.9 5.9
β, time preference factor 0.998 Mean risk-free rate (%p.a.) 0.92 0.92
φs, relative s.d. st 0.0379 S.d. risk-free rate (%p.a.) 2.31 2.31
α, risk aversion coefficient 4.3 Maximum Sharpe ratio (p.a.) 0.45 0.45

Assigned Labor Market Results

B, efficiency of matching technology 0.46 Mean job-finding rate 0.46 0.46
b, home production parameter 0.6 S.d. job-finding rate 6.66 6.36
σ, probability of separation 0.028 Autocorrelation job-finding rate 0.94 0.99
η, matching function elasticity 0.5 S.d. unemployment rate 0.75 0.69
φ, survival probability 0.9972 Autocorrelation unemployment rate 0.97 0.99
ρx, persistence of xt 0.9977 Correlation unemployment, job-finding rate -0.96 -0.98
ρs, persistence of st 0.9944
ge, human capital growth when employed (%p.a.) 3.5 Asset Market Results
ρ, inverse EIS 0.1
rel. size xt component of productivity 0.0445 Mean excess return (%p.a.) 6.96 4.61

S.d. excess return (%p.a.) 15.6 10.3
Mean excess return / s.d. excess return (p.a.) 0.45 0.45
Mean log price-dividend ratio 3.51 3.77
S.d. log price-dividend ratio 0.44 0.36

Table A.4: Parametrization and Results for Model with Epstein-Zin Preferences with Variable Disaster Risk

Panel A: Parameters Panel B: Moments

Endogenously Chosen Targeted Data Model

ga, mean productivity growth (%p.a.) 2.22 Mean productivity growth (%p.a.) 2.22 2.22
σa, s.d. productivity growth (%p.a.) 1.84 S.d. productivity growth (%p.a.) 1.84 1.84
κ, hiring cost 1.22 Mean unemployment rate 5.9 5.9
β, time preference factor 0.998 Mean risk-free rate (%p.a.) 0.92 0.92
σs, disaster intensity volatility parameter 0.0083 S.d. risk-free rate (%p.a.) 2.31 2.31
α, risk aversion coefficient 2.65 Maximum Sharpe ratio (p.a.) 0.45 0.45

Assigned Labor Market Results

B, efficiency of matching technology 0.46 Mean job-finding rate 0.46 0.46
b, home production parameter 0.6 S.d. job-finding rate 6.66 5.66
σ, probability of separation 0.028 Autocorrelation job-finding rate 0.94 0.99
η, matching function elasticity 0.5 S.d. unemployment rate 0.75 0.77
φ, survival probability 0.9972 Autocorrelation unemployment rate 0.97 0.99
ρs, persistence of disaster intensity 0.9966 Correlation unemployment, job-finding rate -0.96 -0.98
ge, human capital growth when employed (%p.a.) 3.5
ρ, inverse EIS 0.1 Asset Market Results
s, disaster intensity (%p.a.) 3.55
θ, disaster impact 0.26 Mean excess return (%p.a.) 6.96 4.80

S.d. excess return (%p.a.) 15.6 10.7
Mean excess return / s.d. excess return (p.a.) 0.45 0.45
Mean log price-dividend ratio 3.51 3.24
S.d. log price-dividend ratio 0.44 0.36



Table A.5: Parametrization and Results for Model with Affine Stochastic Discounts

Panel A: Parameters Panel B: Moments

Endogenously Chosen Targeted Data Model

ga, mean productivity growth (%p.a.) 2.22 Mean productivity growth (%p.a.) 2.22 2.22
σa, s.d. productivity growth (%p.a.) 1.84 S.d. productivity growth (%p.a.) 1.84 1.84
κ, hiring cost 0.90 Mean unemployment rate 5.9 5.9
µ0 0.00077 Mean risk-free rate (%p.a.) 0.92 0.92
µ1 -0.042 S.d. risk-free rate (%p.a.) 2.31 2.31
γ0 25.6 Maximum Sharpe ratio (p.a.) 0.45 0.45
γ1 0.83 S.d. excess return 15.6 15.6

Assigned Labor Market Results

B, efficiency of matching technology 0.46 Mean job-finding rate 0.46 0.46
b, home production parameter 0.6 S.d. job-finding rate 6.66 7.52
σ, probability of separation 0.028 Autocorrelation job-finding rate 0.94 0.99
η, matching function elasticity 0.5 S.d. unemployment rate 0.75 0.73
φ, survival probability 0.9972 Autocorrelation unemployment rate 0.97 0.99
ρs, persistence of state 0.9944 Correlation unemployment, job-finding rate -0.96 -0.98
ge, human capital growth when employed (%p.a.) 3.5

Asset Market Results

Mean excess return (%p.a.) 6.96 6.96
S.d. excess return (%p.a.) 15.6 15.6
Mean excess return / s.d. excess return (p.a.) 0.45 0.45
Mean log price-dividend ratio 3.51 3.24
S.d. log price-dividend ratio 0.44 0.36

Table A.6: Hall (2017) with Alternative Durations of Job Opportunities

Data Model in Hall (2017)
1/δ = 2.6 Original

Parameters
Avg. duration of job opportunity during bargaining (months) – 2.6 77
Per-round probability bargaining ends, δ – 1/2.6 1/77
Bargaining delay cost, ψ – 1.01 0.57

Results
S.d. quarterly unemployment rate (pp) 0.75 0.03 0.97
Cyclicality of user cost of labor to unemployment (%) -5.2 -5.2 0.10

Note: The probability that a job opportunity breaks down after n rounds of bargaining is δ(1 − δ)n so the expected duration of a
job opportunity during bargaining is δ + 2δ(1 − δ) + . . .+ nδ(1 − δ)n−1 + . . . = 1/δ rounds.

Table A.7: Accuracy of Approximations for Job-Finding Rate

Approximation Linear Around RSS Linear Around RSS and λwt+n ≈ λw
σ(λapproxwt )/σ(λglobalwt ) 0.999 1.93

corr(λapproxwt , λglobalwt ) 0.985 0.998

Note: All of these approximations use the assumption that ∆ct+1 ≈ ∆at+1.

Table A.8: Estimated Parameters for Inflation Process

Parameters Estimates

π̄, mean inflation rate 0.0031
φ, autocorrelation coefficient 0.9479
ψ, relative volatility of latent variable 0.2499
σw, volatility of inflation shocks 0.0027
ρπa, correlation inflation shocks, productivity shocks −0.1620



Figure A.1: Sensitivity of Key Moments to Preference Parameters in Baseline and Endowment Economies
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Figure A.2: Determinants of Volatility of Job-Finding Rate

(a) Campbell-Cochrane with External Habit
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(b) Epstein-Zin with Long-Run Risk
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(c) Epstein-Zin with Variable Disaster Risk
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(d) Affine Discount Factor
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Note: σ(λwt) =
∣∣∑∞

n=1 ωnbn
∣∣σ(st) for Campbell-Cochrane preferences with external habit, affine

stochastic discount factor, and Epstein-Zin preferences with variable disaster risk, and σ(λwt) =√(∑∞
n=1 ωnbn

)2
σ(∆st)2 +

(∑∞
n=1 ωncn

)2
σ(xt)2 for Epstein-Zin preferences with long-run risk.



Figure A.3: Time-Varying Worker Bargaining Power in Hall (2017)
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Note: Constructed from data from Hall (2017).


