Keynesian Business Cycle Model

Virgiliu Midrigan
New York University

Macroeconomic Analysis

Recall Classical Model

- Two key equations
- Euler equation (assuming $C_{t}=Y_{t}$)

$$
1+r_{t}=\frac{1}{\beta}\left(\frac{Y_{t+1}}{Y_{t}}\right)^{\sigma}
$$

- Equation that determines output

$$
Y_{t}=f(\text { productivity, taxes, preferences, population })
$$

Classical Model

- Also known as supply-side or real business cycle model
- Real (production-side) factors determine output Y_{t}
- Demand factors, or changes in fiscal policy, determine prices r_{t}
- Changes in monetary policy have no effect on Y_{t}
- Moreover, no need for government to intervene since efficient

Keynesian Model

- Keynes agrees classical model works well in the long-run
- However, prices do not adjust rapidly in short-run
- So Y_{t} may deviate from its efficient level in the short-run
- Need government interventions to prevent recessions

Analogy: Madison Square Garden

- Capacity 20,000 seats
- Classical model:
- ticket prices will adjust to meet demand
- if demand low, prices fall
- if demand high, prices increase
- but always 20,000 in attendance
- Keynesian model:
- prices are set at beginning of the year
- if demand low, attendance $<20,000$
- if demand high, attendance $>20,000$

FIG. 1. Retail Price of $61 / 2 \mathrm{oz}$ Coca-Cola vs Retail Prices of Other Foodstuff, 1890-1957
Source: Historical Statistics of the United States: Colonial Times to 1970, 1989 Edition.
Units: Coca-Cola (\$/6.5oz), Milk Delivered (\$/Qt), Coffee (\$/Lb), Butter (\$/Lb), Sugar (\$/Lb), Bacon (\$/Lb), and Potatoes (\$/10 Lb).

Sprite, 24/12

$\cdots \cdots \cdots$
original price

Monopolistic Competition

- Firms do not choose prices under perfect competition
- many firms, identical goods, cannot charge more than marginal cost
- So think of firms as each having monopoly power for a single good
- Overall consumption: many goods sold by different firms, $i=1 \ldots N$

$$
c_{t}=\left(\sum_{i=1}^{N} c_{i, t}^{\frac{\theta-1}{\theta}}\right)^{\frac{\theta}{\theta-1}}=\left(c_{1, t}^{\frac{\theta-1}{\theta}}+c_{2, t}^{\frac{\theta-1}{\theta}}+c_{3, t}^{\frac{\theta-1}{\theta}}+\ldots+c_{N, t}^{\frac{\theta-1}{\theta}}\right)^{\frac{\theta}{\theta-1}}
$$

- number of firms N very large, so each firm too small to affect W_{t}

Consumer's Problem

- Utility function

$$
\sum_{t=0}^{\infty} \beta^{t}\left(\frac{c_{t}^{1-\sigma}}{1-\sigma}-\frac{1}{2} h_{t}^{2}\right)
$$

subject to

$$
c_{t}=\left(\sum_{i=1}^{N} c_{i, t}^{\frac{\theta-1}{\theta}}\right)^{\frac{\theta}{\theta-1}}
$$

and budget constraint

$$
\sum_{i=1}^{N} p_{i, t} c_{i, t}+b_{t+1}=W_{t} h_{t}+d_{t}+\left(1+i_{t-1}\right) b_{t}
$$

d_{t} are dividends from firms and transfers from government

Two-Stage Budgeting

- First, suppose consumer spends e_{t} dollars in total
- How to allocate this expenditure across various firms?

$$
\max _{c_{i, t}}\left(\sum_{i=1}^{N} c_{i, t}^{\frac{\theta-1}{\theta}}\right)^{\frac{\theta}{\theta-1}}
$$

subject to

$$
\sum_{i=1}^{N} p_{i, t} c_{i, t} \leq e_{t}
$$

- Lagrangean

$$
\mathcal{L}=\left(\sum_{i=1}^{N} c_{i, t}^{\frac{\theta-1}{\theta}}\right)^{\frac{\theta}{\theta-1}}+\lambda_{t}\left(e_{t}-\sum_{i=1}^{N} p_{i, t} c_{i, t}\right)
$$

First Order Conditions

$$
\mathcal{L}=\left(\sum_{i=1}^{N} c_{i, t}^{\frac{\theta-1}{\theta}}\right)^{\frac{\theta}{\theta-1}}+\lambda_{t}\left(e_{t}-\sum_{i=1}^{N} p_{i, t} c_{i, t}\right)
$$

- Differentiate w.r.t to some good $c_{i, t}$:

$$
\left(\sum_{i=1}^{N} c_{i, t}^{\frac{\theta-1}{\theta}}\right)^{\frac{\theta}{\theta-1}-1} c_{i, t}^{-\frac{1}{\theta}}=\lambda_{t} p_{i, t}
$$

- Let $P_{t}=\sum_{i=1}^{N} p_{i, t} \frac{c_{i, t}}{c_{t}}$ be aggregate price index
- Multiply both sides of $c_{i, t}$ FOC by $c_{i, t}$ and add up

$$
\left(\sum_{i=1}^{N} c_{i, t}^{\frac{\theta-1}{\theta}}\right)^{\frac{\theta}{\theta-1}-1} \sum_{i=1}^{N} c_{i, t}^{\frac{\theta-1}{\theta}}=\lambda_{t} \sum_{i=1}^{N} p_{i, t} c_{i, t}
$$

Demand for Each Good

$$
\lambda_{t}=\frac{1}{P_{t}}
$$

- So $c_{i, t}$ FOC simplifies to

$$
\begin{gathered}
\left(\frac{c_{i, t}}{c_{t}}\right)^{-\frac{1}{\theta}}=\frac{p_{i, t}}{P_{t}} \\
c_{i, t}=\left(\frac{p_{i, t}}{P_{t}}\right)^{-\theta} c_{t}
\end{gathered}
$$

- With price index

$$
P_{t}=\left(\sum_{i=1}^{N} p_{i, t}^{1-\theta}\right)^{\frac{1}{1-\theta}}
$$

Second Stage

- Problem identical to what we had earlier

$$
\sum_{t=0}^{\infty} \beta^{t}\left(\frac{c_{t}^{1-\sigma}}{1-\sigma}-\frac{1}{2} h_{t}^{2}\right)
$$

subject to

$$
P_{t} c_{t}+b_{t+1}=W_{t} h_{t}+d_{t}+\left(1+i_{t-1}\right) b_{t}
$$

so the same solutions as previous chapter

Firms' Problem: Flexible Prices

- Absent price adjustment frictions, choose $p_{i, t}$ each period to

$$
\max p_{i, t} y_{i, t}-W_{t} l_{i, t}
$$

subject to production function

$$
y_{i, t}=A_{t} l_{i, t}
$$

and demand function

$$
y_{i, t}=\left(\frac{p_{i, t}}{P_{t}}\right)^{-\theta} C_{t}
$$

Solve Firm's Problem

$$
\max _{p_{i, t}} p_{i, t}\left(\frac{p_{i, t}}{P_{t}}\right)^{-\theta} C_{t}-\frac{W_{t}}{A_{t}}\left(\frac{p_{i, t}}{P_{t}}\right)^{-\theta} c_{t}
$$

- First-order condition

$$
(1-\theta)\left(\frac{p_{i, t}}{P_{t}}\right)^{-\theta} c_{t}+\theta \frac{W_{t}}{A_{t}}\left(\frac{p_{i, t}}{P_{t}}\right)^{-\theta} c_{t} \frac{1}{p_{i, t}}=0
$$

- Rearranging

$$
p_{i, t}=\frac{\theta}{\theta-1} \frac{W_{t}}{A_{t}}
$$

- Charge markup over marginal cost W_{t} / A_{t}
- markup higher if θ lower: goods less substitutable

Aggregation

- Since all firms identical,

$$
P_{t}=N^{\frac{1}{1-\theta}} p_{i, t}=\frac{\theta}{\theta-1} N^{\frac{1}{1-\theta}} \frac{W_{t}}{A_{t}}
$$

- Markup reduces the real wage

$$
\frac{W_{t}}{P_{t}}=\frac{\theta-1}{\theta} N^{\frac{1}{\theta-1}} A_{t}
$$

- And the labor share

$$
\frac{W_{t} L_{t}}{P_{t} Y_{t}}=\frac{\theta-1}{\theta}
$$

Solution with Sticky Prices

- Only fraction $1-\lambda$ of firms can change prices in period t
- Firms that change price at t chooses single price p_{t} to maximize
- current and future profits
- needs to forecast future inflation and marginal costs
- After some messy algebra, solution is

$$
\log \left(P_{t}\right)-\log \left(P_{t-1}\right)=\pi_{t}=\pi_{t}^{e}+\kappa\left(\log Y_{t}-\log Y_{t}^{n}\right)
$$

- π_{t} is inflation, π_{t}^{e} forecast of future inflation
- $\kappa=\frac{(1-\lambda)^{2}}{\lambda}$ depends on how sticky prices are
$-\kappa=0$: prices never change $(\lambda=1)$
$-\kappa=\infty$: prices change all the time ($\lambda=0$ as in Classical model)

Phillips Curve

- Let $\hat{y}_{t}=\log Y_{t}-\log Y_{t}^{n}$: output gap

$$
\pi_{t}=\pi_{t}^{e}+\kappa\left(\log Y_{t}-\log Y_{t}^{n}\right)
$$

$$
\pi_{t}=\pi_{t}^{e}+\kappa \hat{y}_{t}
$$

- If \hat{y}_{t} high: production too high relative to natural rate
- must hire overtime labor, use capital more intensively
- increases marginal cost of production, so firms want higher prices

Adaptive Expectations

- Firms need to forecast next year's inflation π_{t}^{e}
- At the time they make forecast, only π_{t-1} known
- Assume random walk forecast

$$
\pi_{t}^{e}=\pi_{t-1}
$$

- So Phillips curve becomes

$$
\pi_{t}=\pi_{t-1}+\kappa \hat{y}_{t}
$$

IS Curve

- IS stands for investment-savings (another name for Euler equation)

$$
\begin{gathered}
\frac{Y_{t+1}}{Y_{t}}=\left[\beta\left(1+r_{t}\right)\right]^{\frac{1}{\sigma}}, \\
\frac{Y_{t+1}^{n}}{Y_{t}^{n}}=\left[\beta\left(1+r_{t}^{n}\right)\right]^{\frac{1}{\sigma}}, \\
\frac{Y_{t+1} / Y_{t+1}^{n}}{Y_{t} / Y_{t}^{n}}=\left[\frac{1+r_{t}}{1+r_{t}^{n}}\right]^{\frac{1}{\sigma}}, \\
\log Y_{t+1}-\log Y_{t+1}^{n}-\left(\log Y_{t}-\log Y_{t}^{n}\right)=\frac{1}{\sigma}\left(r_{t}-r_{t}^{n}\right) \\
\hat{y}_{t+1}-\hat{y}_{t}=\frac{1}{\sigma}\left(r_{t}-r_{t}^{n}\right), \\
\hat{y}_{t}=\hat{y}_{t+1}-\frac{1}{\sigma}\left(r_{t}-r_{t}^{n}\right),
\end{gathered}
$$

Key Equations

1. Inflation Equation (Phillips Curve)

$$
\pi_{t}=\pi_{t}^{e}+\kappa \hat{y}_{t}=\pi_{t-1}+\kappa \hat{y}_{t}
$$

- reflects pricing choices of individual firms (not all can change prices)
- π_{t} inflation rate, \hat{y}_{t} : output gap (log deviation of y_{t} from y_{t}^{n})
- π_{t}^{e} is expected inflation, assume $\pi_{t}^{e}=\pi_{t-1}$
- κ determines how flexible prices are, $\kappa=\infty$ in Classical model

Key Equations

2. Euler Equation (IS Curve)

$$
\hat{y}_{t}=\hat{y}_{t+1}-\frac{1}{\sigma}\left(r_{t}-r_{t}^{n}\right)
$$

- reflects consumer's savings decisions, desire to smooth consumption
- r_{t} real rate, r_{t}^{n} natural rate (real rate from Classical model)
- σ concavity of utility function, higher σ stronger desire to smooth

Natural Rate of Output and Interest

- Natural Rate: those from the Classical model
- output is supply-determined $\left(A k^{\alpha} h^{1-\alpha}\right)$

$$
Y_{t}^{n}=f(\text { productivity, taxes, preferences, demographics })
$$

- real rate satisfies an Euler equation

$$
1+r_{t}^{n}=\frac{1}{\beta}\left(\frac{Y_{t+1}^{n}}{Y_{t}^{n}}\right)^{\sigma}
$$

or in logs

$$
r_{t}^{n}=-\log (\beta)+\sigma\left(\log Y_{t+1}^{n}-\log Y_{t}^{n}\right)
$$

- more expected output growth, lower β increases natural rate

Monetary Policy

- Fed sets nominal i-rate i_{t} via open market operations
- increase money supply to reduce i_{t}
- reduce money supply to increase i_{t}
- Real rate $r_{t}=i_{t}-\pi_{t}^{e}=i_{t}-\pi_{t-1}$ pinned down as well
- So Fed controls r_{t} (in contrast to Classical model)
- Since $\hat{y}_{t}=\hat{y}_{t+1}-\frac{1}{\sigma}\left(r_{t}-r_{t}^{n}\right)$
- Fed controls \hat{y}_{t}
- and via Phillips curve, inflation: $\pi_{t}=\pi_{t-1}+\kappa \hat{y}_{t}$

Effects of Various Shocks to the Macroeconomy

1. Figure out what happens to natural rates of output and interest
2. Given an interest rate $r_{t}=i_{t}-\pi_{t}^{e}=i_{t}-\pi_{t-1}$, find \hat{y}_{t}

$$
\hat{y}_{t}=\hat{y}_{t+1}-\frac{1}{\sigma}\left(r_{t}-r_{t}^{n}\right)
$$

3. Given \hat{y}_{t}, find inflation

$$
\pi_{t}=\pi_{t-1}+\kappa \hat{y}_{t}
$$

Divine Coincidence

- In classical model, $\kappa=\infty$ so Phillips curve implies

$$
\hat{y}_{t}=\frac{1}{\kappa}\left(\pi_{t}-\pi_{t-1}\right)=0
$$

- Suppose the Fed in Keynesian model sets $r_{t}=r_{t}^{n}, r_{t+1}=r_{t+1}^{n} \ldots$ forever

$$
i_{t}=r_{t}^{n}+\pi_{t-1}
$$

- IS curve then implies that

$$
\hat{y}_{t}=0
$$

- Fed can reproduce the natural rate of output (recall efficient)
- need $\hat{y}_{t+1}=0$, i.e that Fed can credibly commit to $r_{t+1}=r_{t+1}^{n} \ldots$ forever

Inflation

- If $\hat{y}_{t}=0$, then inflation is constant

$$
\pi_{t}=\pi_{t-1}+\kappa \hat{y}_{t}=\pi_{t-1}
$$

- If $\hat{y}_{t}>0$ for only one period, then inflation permanently increases

$$
\pi_{t}=\pi_{t-1}+\kappa \hat{y}_{t}>\pi_{t-1}
$$

- If $\hat{y}_{t}<0$ for only one period, then inflation permanently falls

$$
\pi_{t}=\pi_{t-1}+\kappa \hat{y}_{t}<\pi_{t-1}
$$

Example

- Suppose $\sigma=1, \kappa=0.5$, public expects $\hat{y}_{t+1}=0, r_{t}^{n}=2 \%, \pi_{t-1}=10 \%$

$$
\pi_{t}=\pi_{t-1}+\kappa \hat{y}_{t}=\pi_{t-1}+\frac{1}{2}\left(2 \%-r_{t}\right)
$$

- If $r_{t}=2 \%$, then $\hat{y}_{t}=0, \pi_{t}=\pi_{t-1}+0=10 \%$
- Suppose $r_{t}=6 \%$, then $\hat{y}_{t}=-4 \%, \pi_{t}=\pi_{t-1}+\frac{1}{2}(-4 \%)=8 \%$
- Disinflation is costly

U.S. Experience

Fed Funds Rate

U.S. Experience

Output Gap

Real Rate

Fed Funds Rate

Volcker Disinflation

- Volcker raised i_{t} to reduce inflation. Since $r_{t}=i_{t}-\pi_{t-1}$ also raised r_{t}
- Higher r_{t} reduced output gap, $\hat{y}_{t}=\hat{y}_{t+1}-\frac{1}{\sigma}\left(r_{t}-r_{t}^{n}\right)$
- Negative output gap caused disinflation, $\pi_{t}-\pi_{t-1}=\kappa \hat{y}_{t}<=0$

Is the Fed Keeping Interest Rates Too Low?

Neel Kashkari
@neelkashkari
Need to look at "neutral interest rate" = the rate that balances savings and investment in the economy. Rates have been falling all around the world since 1980. Not driven by short-term central bank movements, but by broader macro forces. We manage around that trend. \#AskNeel

Is the Fed Keeping Interest Rates Too Low?

- Many argued Fed has kept r too low for too long, raising asset prices
- Good policy requires keeping $r_{t}=r_{t}^{n}$
- If $r_{t}<r_{t}^{n}$, increase inflation and output gap
- Hard to argue we had $r_{t}<r_{t}^{n}$ until this year
- π_{t} and \hat{y}_{t} were not unusually high
- low r_{t}^{n} due to expectations of low growth
- This year inflation unusually high so perhaps time to increase r_{t}

Shocks to Inflation Equation

- Fed's role is boring in what we did so far: keep $r_{t}=r_{t}^{n}$
- ensures constant inflation and no output gap
- Sometimes inflation increases even though output gap falls, e.g. 70s
- Capture with shocks o_{t} to Phillips curve:

$$
\pi_{t}=\pi_{t-1}+\kappa \hat{y}_{t}+o_{t}
$$

The Phillips curve in the data

Inflation Shocks

- Tradeoff between output and inflation stabilization

$$
\pi_{t}=\pi_{t-1}+\kappa \hat{y}_{t}+o_{t}
$$

- suppose Fed has an inflation target of $\bar{\pi}=2 \%$
- suppose also $\pi_{t-1}=2 \%$ so Fed achieved target last period
- cannot keep $\hat{y}_{t}=0$ and $\pi_{t}=2$ if $o_{t} \neq 0$
- Tradeoff:
- set $\hat{y}_{t}=0$ (by keeping $r_{t}=r_{t}^{n}$) and $\pi_{t}=\pi_{t-1}+o_{t}$
- or set $\pi_{t}=\pi_{t-1}=2 \%$ and $\hat{y}_{t}=-\frac{1}{\kappa} o_{t}$
- or anything in between

Example: $\kappa=1, \pi_{t-1}=\bar{\pi}=4 \%, o_{t}=0$

- Fed can choose any point along Phillips curve, $(0,4 \%)$ best

Example: $\kappa=1, \pi_{t-1}=\bar{\pi}=4 \%, o_{t}=0$

- Fed can choose any point along Phillips curve, $(0,4 \%)$ best

Example: $\kappa=1, \pi_{t-1}=\bar{\pi}=4 \%, o_{t}=0$

- Fed can choose any point along Phillips curve, $(0,4 \%)$ best

Suppose $o_{t}=4 \%$

- Phillips curve shifts up, $(0,4 \%)$ no longer attainable

Suppose $o_{t}=4 \%$

- Phillips curve shifts up, $(0,4 \%)$ no longer attainable

Suppose $o_{t}=4 \%$

- Phillips curve shifts up, $(0,4 \%)$ no longer attainable

Response to oil shock

- Depends on Fed's preference for stabilizing output vs inflation
- if strongly dislike inflation: reduce \hat{y}_{t} to combat inflation
- if less worried about inflation: keep $\hat{y}_{t} \approx 0$
- Absent a rule for how Fed reacts, cannot predict how y_{t} and π_{t} respond
- Let us assume a rule: Taylor rule
- Fed increase $r(i)$ whenever inflation or future output gap too high
- If strongly dislike inflation, increase r a lot whenever $\pi_{t}>\bar{\pi}$

Taylor rule

$$
i_{t}=2 \%+\pi_{t}+0.5 \hat{y}_{t}+0.5\left(\pi_{t}-2 \%\right)
$$

look like. One policy rule that captures the spirit of the recent research and which is quite straightforward is:

$$
\begin{equation*}
r=p+.5 y+.5(p-2)+2 \tag{1}
\end{equation*}
$$

where
r is the federal funds rate,
p is the rate of inflation over the previous four quarters
y is the percent deviation of real GDP from a target.

That is,
$\mathrm{y} \quad=100\left(\mathrm{Y}-\mathrm{Y}^{*}\right) / \mathrm{Y}^{*}$ where
Y is real GDP, and
Y^{*} is trend real GDP (equals 2.2 percent per year from 1984.1 through 1992.3).

Figure 1. Federal funds rate and example policy rule.

Figure 1: The Original Taylor Rule, 1993-Present

Introduce Taylor Rule in Keynesian Model

- Instead of ad-hoc rule, use a more convenient one:

$$
r_{t}=r_{t}^{n}+\sigma \hat{y}_{t+1}+\sigma m\left(\pi_{t}-\bar{\pi}\right)
$$

- Raise r one-for-one with natural rate
- Also respond to increase in future output gap
- And deviations of inflation from target $\bar{\pi}$
- Higher m the more Fed dislikes missing inflation target

Combine with IS curve

- Taylor rule:

$$
r_{t}-r_{t}^{n}=\sigma \hat{y}_{t+1}+\sigma m\left(\pi_{t}-\bar{\pi}\right)
$$

- Recall Euler equation (IS curve):

$$
\hat{y}_{t}=\hat{y}_{t+1}-\frac{1}{\sigma}\left(r_{t}-r_{t}^{n}\right)
$$

- Combine:

$$
\begin{gathered}
\hat{y}_{t}=\hat{y}_{t+1}-\frac{1}{\sigma}\left(\sigma \hat{y}_{t+1}+\sigma m\left(\pi_{t}-\bar{\pi}\right)\right) \\
\hat{y}_{t}=-m\left(\pi_{t}-\bar{\pi}\right)
\end{gathered}
$$

Two equations

- Euler equation + Taylor rule:

$$
\hat{y}_{t}=-m\left(\pi_{t}-\bar{\pi}\right)
$$

- often referred to as Aggregate Demand
- Phillips curve

$$
\pi_{t}=\pi_{t-1}+\kappa \hat{y}_{t}+o_{t}
$$

- often referred to as Aggregate Supply

Aggregate Demand

Changes in Inflation Target Shift AD Curve

Higher m makes AD flatter (hawk)

Lower m makes AD steeper (dove)

Equilibrium output and inflation

Equilibrium Output and Inflation

$$
\begin{gathered}
\pi_{t}=\pi_{t-1}+\kappa \hat{y}_{t}+o_{t} \\
\hat{y}_{t}=-m\left(\pi_{t}-\bar{\pi}\right)
\end{gathered}
$$

- To find equilibrium, plug AD into AS

$$
\pi_{t}=\pi_{t-1}-\kappa m\left(\pi_{t}-\bar{\pi}\right)+o_{t}
$$

- Solve for π_{t} :

$$
\begin{gathered}
(1+\kappa m) \pi_{t}=\pi_{t-1}+\kappa m \bar{\pi}+o_{t} \\
\pi_{t}=\frac{1}{1+\kappa m} \pi_{t-1}+\frac{\kappa m}{1+\kappa m} \bar{\pi}+\frac{1}{1+\kappa m} o_{t}
\end{gathered}
$$

- And then find \hat{y}_{t} from AD

$$
\hat{y}_{t}=-m\left(\pi_{t}-\bar{\pi}\right)
$$

Steady State

- In steady state $o_{t}=0$ and $\pi_{t}=\pi_{t-1}$
- Solve for π_{t} :

$$
\begin{gathered}
\pi_{t}=\frac{1}{1+\kappa m} \pi_{t}+\frac{\kappa m}{1+\kappa m} \bar{\pi} \\
\frac{\kappa m}{1+\kappa m} \pi_{t}=\frac{\kappa m}{1+\kappa m} \bar{\pi} \\
\pi_{t}=\bar{\pi}
\end{gathered}
$$

- From AD,

$$
\hat{y}_{t}=-m\left(\pi_{t}-\bar{\pi}\right)=0
$$

- Study next effect of oil shocks and changes in $\bar{\pi}$

Example: $\kappa=m=1, \bar{\pi}=4 \%, \pi_{2016}=4 \%, o_{2017}=4 \%$

$$
\pi_{t}=\frac{1}{2} \pi_{t-1}+\frac{1}{2} \bar{\pi}+\frac{1}{2} o_{t}, \text { and } \hat{y}_{t}=-\left(\pi_{t}-4 \%\right)
$$

- $\pi_{2017}=\frac{1}{2} 4 \%+\frac{1}{2} 4 \%+\frac{1}{2} 4 \%=6.0 \%, \quad \hat{y}_{2017}=-(6 \%-4 \%)=-2 \%$

Example: $\kappa=m=1, \bar{\pi}=4 \%, \pi_{2016}=4 \%, o_{2017}=4 \%$

$$
\pi_{t}=\frac{1}{2} \pi_{t-1}+\frac{1}{2} \bar{\pi}+\frac{1}{2} o_{t}, \text { and } \hat{y}_{t}=-\left(\pi_{t}-4 \%\right)
$$

- $\pi_{2017}=\frac{1}{2} 4 \%+\frac{1}{2} 4 \%+\frac{1}{2} 4 \%=6.0 \%, \quad \hat{y}_{2017}=-(6 \%-4 \%)=-2 \%$
- $\pi_{2018}=\frac{1}{2} 6 \%+\frac{1}{2} 4 \%+\frac{1}{2} 0 \%=5.0 \%, \quad \hat{y}_{2018}=-(5 \%-4 \%)=-1 \%$

Example: $\kappa=m=1, \bar{\pi}=4 \%, \pi_{2016}=4 \%, o_{2017}=4 \%$

$$
\pi_{t}=\frac{1}{2} \pi_{t-1}+\frac{1}{2} \bar{\pi}+\frac{1}{2} o_{t}, \text { and } \hat{y}_{t}=-\left(\pi_{t}-4 \%\right)
$$

- $\pi_{2017}=\frac{1}{2} 4 \%+\frac{1}{2} 4 \%+\frac{1}{2} 4 \%=6.0 \%, \quad \hat{y}_{2017}=-(6 \%-4 \%)=-2 \%$
- $\pi_{2018}=\frac{1}{2} \mathbf{6} \%+\frac{1}{2} 4 \%+\frac{1}{2} 0 \%=5.0 \%, \quad \hat{y}_{2018}=-(5 \%-4 \%)=-1 \%$
- $\pi_{2019}=\frac{1}{2} 5 \%+\frac{1}{2} 4 \%+\frac{1}{2} 0 \%=4.5 \%, \quad \hat{y}_{2019}=-(4.5 \%-4 \%)=-0.5 \%$

Example: $\kappa=m=1, \bar{\pi}=4 \%, \pi_{2016}=4 \%, o_{2017}=4 \%$

$$
\pi_{t}=\frac{1}{2} \pi_{t-1}+\frac{1}{2} \bar{\pi}+\frac{1}{2} o_{t}, \text { and } \hat{y}_{t}=-\left(\pi_{t}-4 \%\right)
$$

- $\pi_{2017}=\frac{1}{2} 4 \%+\frac{1}{2} 4 \%+\frac{1}{2} 4 \%=6.0 \%, \quad \hat{y}_{2017}=-(6 \%-4 \%)=-2 \%$
- $\pi_{2018}=\frac{1}{2} 6 \%+\frac{1}{2} 4 \%+\frac{1}{2} 0 \%=5.0 \%, \quad \hat{y}_{2018}=-(5 \%-4 \%)=-1 \%$
- $\pi_{2019}=\frac{1}{2} 5 \%+\frac{1}{2} 4 \%+\frac{1}{2} 0 \%=4.5 \%, \quad \hat{y}_{2019}=-(4.5 \%-4 \%)=-0.5 \%$
- Output and inflation return to steady state slowly

Transition Dynamics

Transition Dynamics: $m=4$

Transition Dynamics: $m=1 / 4$

Transition Dynamics on AD/AS diagram

Effect of a Disinflation

- Suppose $\bar{\pi}=8 \%$ up to 1979
- Volcker comes in 1980 and changes $\bar{\pi}=4 \%$
- How does output and inflation react in the next few years?

Disinflation on AD/AS diagram

Transition Dynamics

Monetary Policy Shocks

- So far we assumed

$$
r_{t}=r_{t}^{n}+\sigma \hat{y}_{t+1}+\sigma m\left(\pi_{t}-\bar{\pi}\right)
$$

- In reality Fed does not observe r_{t}^{n} or \hat{y}_{t+1} perfectly so makes mistakes
- Or if r_{t}^{n} falls a lot, cannot reduce r_{t} due to zero lower bound
- Let $r_{t}^{*}=r_{t}^{n}+\sigma \hat{y}_{t+1}+\sigma m\left(\pi_{t}-\bar{\pi}\right)$: "correct" interest rate
- Assume instead of setting $r_{t}=r_{t}^{*}$ Fed instead sets

$$
r_{t}=r_{t}^{*}-\sigma a_{t}
$$

- Here a_{t} determines the size of the mistake; if $a_{t}>0$ Fed sets r too low

Derive new AD curve

- We now have

$$
\begin{gathered}
r_{t}=r_{t}^{n}+\sigma \hat{y}_{t+1}+\sigma m\left(\pi_{t}-\bar{\pi}\right)-\sigma a_{t} \\
\hat{y}_{t}=\hat{y}_{t+1}-\frac{1}{\sigma}\left(r_{t}-r_{t}^{n}\right)
\end{gathered}
$$

- Gives

$$
\begin{gathered}
\hat{y}_{t}=\hat{y}_{t+1}-\frac{1}{\sigma}\left(\sigma \hat{y}_{t+1}+\sigma m\left(\pi_{t}-\bar{\pi}\right)-\sigma a_{t}\right) \\
\hat{y}_{t}=a_{t}-m\left(\pi_{t}-\bar{\pi}\right)
\end{gathered}
$$

- a_{t} also referred to as aggregate demand shock
- a lot like changes in inflation target, except that usually transitory

AD shock (hits in 2008, reverts 2014)

Transition Dynamics after AD shock

Rational Expectations

- So far assumed adaptive expectations: $\pi_{t}^{e}=\pi_{t-1}$
- Assume instead rational expectations:
- agents know the model and compute model-consistent forecasts

$$
\begin{gathered}
\pi_{t}=\pi_{t}^{e}+\kappa \hat{y}_{t}+o_{t} \\
\hat{y}_{t}=\hat{y}_{t+1}-\frac{1}{\sigma}\left(r_{t}-r_{t}^{n}\right) \\
r_{t}-r_{t}^{n}=\sigma \hat{y}_{t+1}+\sigma m\left(\pi_{t}-\bar{\pi}\right) \\
\hat{y}_{t}=-m\left(\pi_{t}-\bar{\pi}\right)
\end{gathered}
$$

Rational Expectations

- So system is

$$
\begin{aligned}
\pi_{t} & =\pi_{t}^{e}+\kappa \hat{y}_{t}+o_{t} \\
\hat{y}_{t} & =-m\left(\pi_{t}-\bar{\pi}\right)
\end{aligned}
$$

- Rational expectations:

$$
\pi_{t}^{e}=\mathbb{E}_{t} \pi_{t+1}
$$

- $\mathbb{E}_{t}:$ mathematical expectations operator using info up to t

$$
\pi_{t}=\frac{1}{1+\kappa m} \mathbb{E}_{t} \pi_{t+1}+\frac{\kappa m}{1+\kappa m} \bar{\pi}+\frac{1}{1+\kappa m} o_{t}
$$

- Assume supply shocks o_{t} follow $\operatorname{AR}(1)$ process: $\mathbb{E}_{t} o_{t+1}=\rho o_{t}$
- ρ determines how rapidly shock decays

Solve the Model

- Guess and verify

$$
\pi_{t}=\gamma_{0}+\gamma_{1} o_{t}
$$

- γ_{0} and γ_{1} unknown coefficients that need to be determined
- Forecast of inflation

$$
\mathbb{E}_{t} \pi_{t+1}=\gamma_{0}+\gamma_{1} \mathbb{E}_{t} o_{t+1}=\gamma_{0}+\gamma_{1} \rho o_{t}
$$

- Check guess is correct and use method of undetermined coefficients:

$$
\begin{aligned}
\pi_{t} & =\frac{1}{1+\kappa m} \mathbb{E}_{t} \pi_{t+1}+\frac{\kappa m}{1+\kappa m} \bar{\pi}+\frac{1}{1+\kappa m} o_{t} \\
\gamma_{0}+\gamma_{1} o_{t} & =\frac{1}{1+\kappa m}\left(\gamma_{0}+\gamma_{1} \rho o_{t}\right)+\frac{\kappa m}{1+\kappa m} \bar{\pi}+\frac{1}{1+\kappa m} o_{t}
\end{aligned}
$$

Method of Undetermined Coefficients

$$
\gamma_{0}+\gamma_{1} o_{t}=\frac{1}{1+\kappa m}\left(\gamma_{0}+\gamma_{1} \rho o_{t}\right)+\frac{\kappa m}{1+\kappa m} \bar{\pi}+\frac{1}{1+\kappa m} o_{t}
$$

- This equation must hold for any o_{t} so match up coefficients:

$$
\begin{aligned}
\gamma_{0} & =\frac{1}{1+\kappa m} \gamma_{0}+\frac{\kappa m}{1+\kappa m} \bar{\pi} \\
\gamma_{1} & =\frac{1}{1+\kappa m} \gamma_{1} \rho+\frac{1}{1+\kappa m}
\end{aligned}
$$

Method of Undetermined Coefficients

- First equation implies:

$$
\gamma_{0}=\bar{\pi}
$$

- Second equation implies

$$
\gamma_{1}=\frac{1}{1+\kappa m-\rho}
$$

- So equilibrium inflation and output

$$
\begin{gathered}
\pi_{t}=\bar{\pi}+\frac{1}{1+\kappa m-\rho} o_{t} \\
\hat{y}_{t}=-\frac{m}{1+\kappa m-\rho} o_{t}
\end{gathered}
$$

- Does not depend on past inflation so disinflations costless

Optimal Monetary Policy

- Assume rational expectations and $\rho=0$ so $\mathbb{E}_{t} \pi_{t+1}=\bar{\pi}$

$$
\pi_{t}=\bar{\pi}+\kappa \hat{y}_{t}+o_{t}
$$

- Euler equation $\left(\mathbb{E}_{t} \hat{y}_{t+1}=0\right)$

$$
\hat{y}_{t}=-\frac{1}{\sigma}\left(r_{t}-r_{t}^{n}\right)
$$

- Fed objective

$$
\left(\hat{y}_{t}-0\right)^{2}+\alpha\left(\pi_{t}-\bar{\pi}\right)^{2}
$$

- What is optimal policy $\left(r_{t}\right)$ given o_{t} and r_{t}^{n} ?
- since r_{t} determines \hat{y}_{t} and π_{t}, can directly choose these

Fed Problem

- Substitute Phillips curve into Fed objective

$$
\max _{\hat{y}_{t}} \hat{y}_{t}^{2}+\alpha\left(\kappa \hat{y}_{t}+o_{t}\right)^{2}
$$

- FOC:

$$
\hat{y}_{t}+\alpha \kappa\left(\kappa \hat{y}_{t}+o_{t}\right)
$$

- Solution:

$$
\begin{gathered}
\hat{y}_{t}=-\frac{\alpha \kappa}{1+\alpha \kappa^{2}} o_{t} \\
\hat{\pi}_{t}=\bar{\pi}+\frac{1}{1+\alpha \kappa^{2}} o_{t} \rightarrow m=\alpha \kappa \\
r_{t}=r_{t}^{n}+\frac{\sigma \alpha \kappa}{1+\alpha \kappa^{2}} o_{t}
\end{gathered}
$$

